Universality aspects of the trimodal random-field Ising model
- Author(s)
- Nikolaos G. Fytas, Panagiotis Theodorakis, I. Georgiou
- Abstract
We investigate the critical properties of the d = 3 random-field Ising model with an equal-weight trimodal distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we compute large ensembles of ground states for several values of the disorder strength h and system sizes up to N = 128(3). Using a new approach based on the sample-to-sample fluctuations of the order parameter of the system and proper finite-size scaling techniques we estimate the critical disorder strength h(c) = 2.747(3) and the critical exponents of the correlation length nu = 1.34(6) and order parameter beta = 0.016(4). These estimates place the model into the universality class of the corresponding Gaussian random-field Ising model.
- Organisation(s)
- Computational and Soft Matter Physics
- External organisation(s)
- University of Patras, Technische Universität Wien
- Journal
- European Physical Journal B
- Volume
- 85
- No. of pages
- 7
- ISSN
- 1434-6028
- DOI
- https://doi.org/10.1140/epjb/e2012-30731-8
- Publication date
- 2012
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103002 Acoustics
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/f9a1979a-5b8b-4f63-9903-fc77d2aa8b1c