Universality aspects of the trimodal random-field Ising model

Author(s)
Nikolaos G. Fytas, Panagiotis Theodorakis, I. Georgiou
Abstract

We investigate the critical properties of the d = 3 random-field Ising model with an equal-weight trimodal distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we compute large ensembles of ground states for several values of the disorder strength h and system sizes up to N = 128(3). Using a new approach based on the sample-to-sample fluctuations of the order parameter of the system and proper finite-size scaling techniques we estimate the critical disorder strength h(c) = 2.747(3) and the critical exponents of the correlation length nu = 1.34(6) and order parameter beta = 0.016(4). These estimates place the model into the universality class of the corresponding Gaussian random-field Ising model.

Organisation(s)
Computational and Soft Matter Physics
External organisation(s)
University of Patras, Technische Universität Wien
Journal
European Physical Journal B
Volume
85
No. of pages
7
ISSN
1434-6028
DOI
https://doi.org/10.1140/epjb/e2012-30731-8
Publication date
2012
Peer reviewed
Yes
Austrian Fields of Science 2012
103002 Acoustics
Portal url
https://ucrisportal.univie.ac.at/en/publications/f9a1979a-5b8b-4f63-9903-fc77d2aa8b1c