Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer

Author(s)
Emanuela Frittoli, Andrea Palamidessi, Fabio Iannelli, Federica Zanardi, Stefano Villa, Leonardo Barzaghi, Hind Abdo, Valeria Cancila, Galina V. Beznoussenko, Giulia Della Chiara, Massimiliano Pagani, Chiara Malinverno, Dipanjan Bhattacharya, Federica Pisati, Weimiao Yu, Viviana Galimberti, Giuseppina Bonizzi, Emanuele Martini, Alexander A. Mironov, Ubaldo Gioia, Flora Ascione, Qingsen Li, Kristina Havas, Serena Magni, Zeno Lavagnino, Fabrizio Andrea Pennacchio, Paolo Maiuri, Silvia Caponi, Maurizio Mattarelli, Sabata Martino, Fabrizio d'Adda di Fagagna, Chiara Rossi, Marco Lucioni, Richard Tancredi, Paolo Pedrazzoli, Andrea Vecchione, Cristiano Petrini, Francesco Ferrari, Chiara Lanzuolo, Giovanni Bertalot, Guilherme Nader, Marco Foiani, Matthieu Piel, Roberto Cerbino, Fabio Giavazzi, Claudio Tripodo, Giorgio Scita
Abstract

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.

Organisation(s)
Computational and Soft Matter Physics
External organisation(s)
IFOM-FIRC Institute of Molecular Oncology, Universitá degli Studi di Milano, Max-Planck-Institut für Dynamik und Selbstorganisation, Università degli Studi di Palermo, Agency for Science, Technology and Research A*STAR, European Institute of Oncology, Università degli studi di Napoli Federico II, Università degli Studi di Perugia, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Fondazione IRCCS Policlinico San Matteo, Università degli studi di Pavia, Ospedale Uboldo, Sapienza University of Rome, Ospedale Santa Chiara di Trento, Università degli Studi di Trento, Centre National De La Recherche Scientifique (CNRS), Université de recherche Paris Sciences et Lettres, Institut Curie, Istituto Nazionale Genetica Moleccolare (INGM)
Journal
Nature Materials
Volume
22
Pages
644–655
No. of pages
12
ISSN
1476-1122
DOI
https://doi.org/10.1038/s41563-022-01431-x
Publication date
12-2022
Peer reviewed
Yes
Austrian Fields of Science 2012
104004 Chemical biology, 103018 Materials physics
Keywords
ASJC Scopus subject areas
Condensed Matter Physics, Mechanics of Materials, Mechanical Engineering, Chemistry(all), Materials Science(all)
Sustainable Development Goals
SDG 3 - Good Health and Well-being
Portal url
https://ucris.univie.ac.at/portal/en/publications/tissue-fluidification-promotes-a-cgassting-cytosolic-dna-response-in-invasive-breast-cancer(33621404-d79f-4a85-8229-dabe2a5b319c).html