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We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster
crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging
to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For
this purpose, we examine in detail the phase behavior and structural properties of model amphi-
philic dendrimers of the second generation by means of monomer-resolved computer simulations.
On augmenting the density of these systems, a fluid comprised of clusters that contain several
overlapping and penetrating macromolecules is spontaneously formed. Upon further compression
of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability
of which is demonstrated by means of free-energy calculations, and where the FCC is preferred
over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the
particles interact exclusively by e↵ective pair potentials, the internal degrees of freedom of these
molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability
of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster
occupation number versus density. The structural properties of the dendrimers in the dense crystals,
including their overall sizes and the distribution of monomers are also thoroughly analyzed. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4950953]

I. INTRODUCTION

The formation of stable clusters crystals,1 i.e., crystals
with multiply occupied lattice sites of overlapping particles, is
a well-established property for soft spheres with a particular
type of interaction, and it has been the subject of intensive
theoretical investigations since their first discovery a few
years ago.2–10 Whereas early work had mainly focused on
the behavior of simplified mathematical models,11–17 it has
been later demonstrated that the infinite-dilution e↵ective
interaction between suitably designed macromolecules fulfills
the criteria set forth for the formation of cluster crystals,18,19

thus bringing the latter into the realm of what is realizable
experimentally. This kind of organization in complex
fluids provides a vast richness of fascinating and highly
unusual properties. Among these are intriguing phase2 and
compression behavior,20 unusual dynamics, phonon spectra
and isostructural transitions at low temperatures,10,21,22 lattice-
site to lattice-site particle exchange, i.e., hopping,23,24 as well
as the finding that such systems are non-Newtonian fluids with
unique rheology and transport behavior.25,26

The main criterion necessary to be satisfied by particles
to feature the ability to form cluster crystals was put forward
by Likos et al.19 and lies in the characteristic behavior of
the Fourier transformation �̂(q) of the particle pair-interaction
�(r), where r is the separation between the particles and q
is a wavenumber in reciprocal space. The criterion applies
to interactions that decay to zero su�ciently fast at large
distances and are bounded for all separations r , so that the

potential is integrable and the Fourier transformation exists.
The criterion establishes that only two possible scenarios for
the system behavior exist, depending solely on the sign of
�̂(q). If �̂(q) is a non-negative function, i.e., �̂(q) � 0 for all
q-values, the system will show re-entrant melting behavior at
high densities. More precisely, at su�ciently low temperature
there is a low-density phase transition from a fluid to a crystal
with single occupied lattice sites, but at high temperatures a
fluid is the only stable phase at all densities.27,28 Accordingly,
at low temperatures there must be a reentrant melting transition
on the high density-side, and the system displays a maximal
freezing temperature as well. This type of potential belongs
to the so-called Q+ class of functions. If, on the other hand,
the potential �̂(q) attains negative values for certain ranges
of the wavenumber q, it is categorized as belonging to the
Q± class of functions. For such systems, the fluid state is
absolutely unstable at all temperatures for su�ciently high
densities,19,29,30 leading to the formation of cluster crystals.
It should be emphasized that attractions are not necessary;
even purely repulsive interactions lead to cluster formation,
as long as they belong to the Q±-class.18,20,29 A typical and
well studied example for such potentials are the members of
the generalized exponential model (GEM), which have the
form �(r) = ✏ exp[�(r/�)n], ✏ and � being the energy and the
length scales of the interaction, respectively. The transition
between Q+ and Q± for this special class of potentials lies
exactly at n = 2 corresponding to the Gaussian core model.29

The penetrable sphere model11–17 is obtained as the limiting
case of the GEM-model for n ! 1.
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To proceed from a mathematical to a physically motivated
model, one has to address the question of how such systems
could be experimentally realizable: after all, the usual,
atomistic or molecular interaction potentials are diverging
at small separations whereas the aforementioned e↵ective
ones remain bounded, raising the issue of whether the
e↵ective interactions can be physical. If one considers,
however, polymeric macromolecules, one finds that a bounded
potential can be understood in terms of an e↵ective pair-
interaction20,31–36 acting between suitably chosen, coarse-
grained degrees of freedom. In the process of obtaining
this e↵ective description, the full set of internal degrees of
freedom of the monomeric units is integrated out and replaced
by a small number of degrees of freedom. The simplest
and most popular choice is to replace each molecule with
its center of mass and to integrate out all orientations, so
that an e↵ective pair potential �(r) = �e↵(r) between any two
centers of mass results, which only depends on the relative
distance r between them.32,37 Such e↵ective interactions for
macromolecular systems and low monomer concentrations
are in general bounded, since centers of mass are not material
particles and thus they can fully overlap paying only a finite
free energy penalty.

There is a caveat with the aforementioned approach:
the e↵ective pair-potential is actually density-dependent
due to the fact that the statistics of the internal degrees
of freedom of flexible macromolecules is, in general,
dependent on concentration. In the theoretical description,
one employs instead a density-independent interaction for
all concentrations, which is derived by considering just two
interacting molecules in a large volume, i.e., in the infinite-
dilution limit. It is tempting to use this approach, at least
as a first-order approximation, assuming that the e↵ective
interaction is not markedly a↵ected by the density, and
postulating thus its validity also for the higher densities in
which cluster crystals form. It is not a priori clear, though,
how reliable such an approximation is. A good illustration of
a system where the approach based on the infinite-dilution
e↵ective interaction fails is a system of ring polymers.
The e↵ective pair-interaction for rings is indeed of the Q±

type in the zero density limit, but full monomer-resolved
simulations of these systems reveal no hint of clustering at

higher densities.34 In this particular case, this is caused by the
fact that beyond the overlap concentration, the rings undergo
very substantial deformations in comparison to their shapes
and conformations at infinite dilution. Accordingly, the full
e↵ective Hamiltonian would include many-body terms, which
are expressed as a strongly density-dependent e↵ective pair
potential. The finite-density e↵ective pair potential di↵ers
dramatically from its infinite-dilution counterpart, thus the
predictions based on the latter turn out to be unreliable. More
sophisticated approaches than a reduction to the center of mass
are thus called upon to properly coarse-grain concentrated
ring-polymer solutions.38

A di↵erent candidate system for the formation of cluster
crystals was proposed by Mladek et al.18 in the form of second
generation amphiphilic dendrimers, for which the e↵ective
pair-interaction also belongs to the Q± class of potentials.
For this system, the clustering phenomenon extends to higher
densities and gives rise to a cluster fluid,7 also showing
indications of forming stable cluster crystals. The structure
of such a conjectured crystal is schematically illustrated in
Fig. 1 and entails three levels. At the microscopic level, we
find the monomeric description of the dendrimers that at the
coarse grained level are represented by a soft spherical object.
On increasing the density, a number of these dendrimers
are expected to form a cluster of overlapping particles. The
clusters can be thought of as a new structural unit at the
next step of coarse graining that form a crystal on the
third structural level. The existence of cluster crystals in
these model dendrimer systems was demonstrated explicitly
by means of monomer-resolved computer simulations and
their thermodynamical stability was confirmed by free energy
calculations.39 Here we will examine various aspects of those
results in more detail and we investigate in detail the internal
structure of clusters and crystals.

The rest of this work is organized as follows: we give
a detailed description of the dendrimer model in Sec. II.
In Sec. III we recapitulate the main constituents of the
theoretical framework employed to describe the formation
of cluster crystals in the e↵ective potential picture and discuss
its predictions for the system at hand. Monomer-resolved
computer simulation results for the cluster fluid phase are
shown in Sec. IV. In Sec. V we analyze the mechanical

FIG. 1. Schematic representations of
the primary internal structure of a single
amphiphilic dendrimer of second gen-
eration (left), the secondary structure
in which dendrimers pack into clusters
(middle), and the tertiary structure of
the formation of a BCC cluster crystal
(right). The two lower images repre-
sent a coarse grained description of a
dendrimer and a cluster. The core and
shell monomers/shells are represented
by blue (black) and red spheres/regions,
respectively.
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stability of the cluster crystals that have been investigated,
whereas in Sec. VI we examine the internal structure of
clusters in these crystals. The thermodynamic stability of
cluster crystals is addressed in Sec. VII by means of free
energy calculations. Finally, in Sec. VIII we summarize and
draw our conclusions.

II. DENDRIMER MODELS AND MAIN PROPERTIES

For our computer simulations we employ a simple
model for second generation amphiphilic dendrimers that
was introduced by Mladek et al.7,18,40,41 Each dendrimer,
an example of which schematically is shown in Fig. 1, is
formed by a central pair of generation g = 0 monomers and to
either of them, two generation g = 1 monomers are attached.
Together these six monomers form the solvophobic core of
the dendrimer, which is surrounded by a solvophilic shell
formed by a total of eight monomeric units of generation
g = 2. The latter are evenly distributed by connecting them in
pairs to each of the g = 1 core monomers. In this fashion, a
small amphiphilic dendrimer consisting of just 14 monomers
is formed. In order to distinguish the two types of monomers
we introduce the sub-indices C and S for the core and shell
monomers, respectively.

Intra- and inter-molecular interactions between any two
monomers, separated by a distance r , are modeled by the
Morse potential42

��Morse
µ⌫ (r) = ✏ µ⌫

⇢ f
e�↵µ⌫(r��µ⌫) � 1

g2 � 1
�
,

µ⌫ = CC, CS, SS
(1)

where �µ⌫ denotes the e↵ective diameter between two
monomers of species µ and ⌫, with µ,⌫ = C or S. The
potentials are measured in terms of the inverse temperature
� = (kBT)�1, with kB the Boltzmann constant. The Morse
potential is characterized by a repulsive short-range behavior
and an attractive part at long distances, whose range and depth
are parameterized via ↵µ⌫ and ✏ µ⌫, respectively. By choosing
appropriate values for these parameters, the solvent-mediated
interactions result in the solvophobic and solvophilic character
observed for amphiphilic dendrimers.

The connectivity within the dendrimers is maintained
by the finitely extensible nonlinear elastic (FENE) potential,

given by

��FENE
µ⌫ (r) = �Kµ⌫R2

µ⌫ log
2666641 �

 
r � lµ⌫

Rµ⌫

!2377775 ,
µ⌫ = CC, CS

(2)

where the spring constant Kµ⌫ restricts the monomer
separation r to be within a distance Rµ⌫ from the equilibrium
bond length lµ⌫.

We will be employing two di↵erent sets of interaction
parameters, denoted by Model I and Model II, as listed in
Table I. Model I corresponds to the amphiphilic dendrimers
that were introduced by Mladek et al.7,18,40,41 Model II was
introduced more recently by Lenz et al.39 and it facilitates
the formation of thermodynamically stable cluster crystals
with a lower cluster occupancy, which makes this behavior
more easily accessible by means of computer simulations.
This is achieved by a combination of an equilibrium bond
length between the two central monomers that is larger then
the bond-length between 0th and 1st generation monomers,
a wider range of attraction between core monomers, and a
larger size of the shell monomers. The e↵ective size � ⌘ �CC
of the core monomers, which is the same for both models,
will be the unit of length.

The size of the two model dendrimers at infinite dilution
as determined by computer simulation is RI

g = 3.36� and
RII
g = 3.58�, RI,II

g denoting the radius of gyration for Model
I and Model II, respectively. The latter is slightly larger
due to the increased equilibrium bond-length between the
two central core monomers. More important with respect
to the phase behavior of these systems, however, are the
e↵ective pair-interactions between the centers of mass, shown
in Fig. 2.43 They can be obtained from the simulation of two
isolated dendrimers on the monomeric level in combination
with the umbrella sampling technique.7,18 The shape of this
interaction for the two models is similar. At large separations,
where the regions of repulsive, solvophilic shells of the two
dendrimers are partially overlapping, the e↵ective interaction
is correspondingly repulsive. Upon closer approach, also the
core regions start to overlap. The solvophobic core monomers
experience a relatively strong mutual attractive interaction that
counteracts the long-range repulsion stemming from the SS-
and CS-interactions. As a result of the combined e↵ects, for

TABLE I. The interaction parameters used in Model I and Model II for the Morse interaction, Eq. (1), and the
FENE bonds, Eq. (2). The labels C and S correspond to core and shell monomers, respectively.

Model I Model II

Morse ✏µ⌫ ↵µ⌫� �µ⌫/� ✏µ⌫ ↵µ⌫� �µ⌫/�

CC 0.714 6.4 1.0 0.714 1.8 1.0
CS 0.014 28 19.2 1.25 0.017 85 6.0 1.75
SS 0.014 28 19.2 1.5 0.017 85 6.0 2.5

FENE Kµ⌫�2 lµ⌫/� Rµ⌫/� Kµ⌫�2 lµ⌫/� Rµ⌫/�

CC (g= 0) 40 1.875 0.375 60 3.1875 0.6375
CC 40 1.875 0.375 60 1.875 0.375
CS 20 3.75 0.75 30 3.5625 0.7125
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FIG. 2. The e↵ective pair interaction �(r ) between two amphiphilic den-
drimers for both models. The inset shows the corresponding Fourier trans-
forms �̂(q).

a center of mass distance of less than a radius of gyration, an
e↵ective attraction between the two dendrimers develops.

The e↵ective interaction resulting from Model II features
a significantly stronger attraction between the dendrimers at
short range and provides an intuitive argument to explain
the increased thermodynamic stability for the formation of
cluster crystals (see also Section III that follows). At the
same time, the negative minimum that it has for r = 0 renders
this pair potential unstable, in the sense that a many-body
system of point particles interacting pairwise by this potential
would lack a thermodynamic limit, featuring instead collapse
of infinitely many particles onto a finite droplet.44 This is,
however, no reason for concern: the e↵ective pair interaction
is employed here only as an intermediate tool within the
framework of a mean-field approximation (MFA) in which
the aforementioned instability is suppressed. The MFA allows
us to obtain a ball-park prediction on the density-region in
which cluster formation can be expected. All subsequent
investigations are carried through by means of the original,
microscopic interactions, all of which feature strong short-
range steric repulsions between monomers and are thus free
of any pathologies. The quantitative reliability of the MFA
on the basis of the e↵ective interaction is then established
a posteriori.

III. MEAN-FIELD APPROXIMATION
FOR THE EFFECTIVE INTERACTIONS

The overall shapes of the e↵ective pair-interactions �(r)
between dendrimers for both models, shown in Fig. 2, classify
them as members of the class of Q±-potentials.19 For such
bounded interactions, as well as for their Q+-counterparts,28,45

the MFA has been shown to be extremely accurate in predicting
the structure of the fluid phase as well as the formation of
the clusters and the instability of the fluid that leads to the
cluster crystal formation.19,29 In what follows, we recapitulate
the predictions from the MFA and apply them in particular to
the systems (Model I and Model II) at hand, which serve as a
guidance for the search for cluster crystals on the basis of the
monomer-resolved models.

At su�ciently high densities ⇢, where ⇢ = N/V is given
by the number of dendrimers N per volume V , it has been
shown that the direct correlation function c(r) is, to an
excellent approximation, related to the pair-interaction �(r)
by19,28,29,45

c(r) = ���(r). (3)

Eq. (3) is similar to the mean spherical approximation,
taking additionally into account that there is no short range
excluded volume contribution present. In combination with
the Ornstein-Zernike relation,46 the static structure factor S(q)
in the MFA is written as

S(q) = 1
1 + �⇢�̂(q)

, (4)

where q is a wavenumber. Within the MFA, the presence of
negative Fourier components in the e↵ective pair-interaction
causes an upper density limit to the stability of a homogeneous
fluid phase, because for the corresponding wavenumbers q,
the structure factor in Eq. (4) would diverge and become
negative on increasing ⇢ at fixed T ; the same holds for
lowering T at fixed ⇢. Therefore, if we denote by q⇤ the
value of the wavenumber q at which �̂(q) attains its (negative)
absolute minimum, we obtain the so-called �-line in the
density-temperature diagram kBT� = |�̂(q⇤)|⇢�, also known
as the Kirkwood instability.13

Based on these theoretical considerations, it was
postulated that Q± systems will freeze at all temperatures for
su�ciently high densities.19 However, since these particular
systems have bounded interactions, the crystals do not
necessarily have to form by placing one particle per lattice
site as is the case for systems interacting via hard or diverging
potentials. Instead, crystals with multiple occupancy can form,
i.e., two or more particles forming a cluster can be localized
on the same crystal lattice position. With the aid of density
functional theory, Likos et al.29 demonstrated that the freezing
densities ⇢⇥ for these type of pair-interactions also lie on a
straight line in the density-temperature plane, namely,

⇢⇥ =
kBT

1.393 |�̂(q⇤)|
, (5)

which preempts the aforementioned Kirkwood instability
of the homogeneous fluid (⇢⇥ < ⇢� at fixed T). The
crystallization line depends on the model only via the value
of �̂(q⇤). Moreover, the average number of particles per lattice
site, i.e., average cluster size Nocc, is found to be proportional
to the density,

Nocc =
⇣3

zq3
⇤
⇢, (6)

so that the lattice spacing a is independent of ⇢,

a =
⇣

q⇤
. (7)

The last two quantities depend on the model only through
the wavenumber q⇤ at which the Fourier transform of the
pair-interaction attains its minimum value. The constants
⇣ and z that appear in these expressions are geometrical
values corresponding to a specific crystalline structure under
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consideration. In particular, one finds (⇣ , z) = (2
p

2⇡,2) and
(2
p

3⇡,4) for the BCC and FCC crystal, respectively.29

Despite their approximate character, stemming from both
the zero-density e↵ective potential approximation and the
MFA on the same, the above results serve as a first estimate
of the region of interest in which stable cluster crystals of
the real systems could be found; one needs, therefore, to
relate the numbers of the MFA-predictions to the microscopic
parameters of the specific models at hand. To this end, we list
in Table II the most important quantities for both models and
the corresponding predictions for the freezing transition.43 The
wavevector q⇤where the Fourier transform of the e↵ective pair-
potential attains its minimum value, �̂(q⇤), is obtained from
simulation results as shown in Fig. 2. The predicted value for
the freezing-density, ⇢⇥, pertains to the BCC-crystal29 but the
corresponding one for the FCC-crystal is close. Numerically,
the values ⇢⇥�3 are rather low, but one needs to keep in mind
that these are the dendrimer densities reduced over the volume
�3 of the core monomers. In terms of a volume fraction by
means of the size of an isolated dendrimer, R3

g , these values
become (4⇡/3)⇢⇥R3

g = 3.29 and 0.55 for Model I and Model
II, respectively. These densities can alternatively be expressed
in the form of a total monomer volume fraction ⌘⇥, which we
define as

⌘ = ⇢
⇡

6
�
6�3

CC + 8�3
SS
�
, (8)

where we have used the values �CC and �SS as a measure
for the e↵ective diameters of core and shell monomers,
respectively. This reveals that freezing is predicted for both
models to occur for systems that are moderately dense at the
monomer level and dense on the dendrimer level.

Both the average cluster size at the MFA-freezing density,
Nocc,⇥, and the corresponding lattice distance a do depend on
the crystalline structure at hand via the geometric constants
⇣ and z. For this reason, these properties are only listed
for the BCC and FCC crystals, which according to MFA
results are expected to be the most relevant structures in these
particular systems. The predicted density ⇢⇥ at which the
freezing transition occurs in the case of Model II is more than

TABLE II. The radius of gyration Rg and the wave vector q⇤ at which
the pair interaction is minimal for both dendrimer models. The predicted
values for the freezing transition are labeled by ⇥. The average cluster size
at freezing Nocc,⇥ and the corresponding lattice distance a are only given for
the BCC and FCC crystal structures.43

Model I Model II

Rg/� 3.37 3.58
q⇤� 0.95 0.74
��̂e↵(q⇤)/�3 �35 �249
⇢�R

3
g 1.094 0.185

⇢⇥�3 0.021 0.0029
⇢⇥R3

g 0.785 0.133
⌘⇥ 0.358 0.198

BCC FCC BCC FCC

Nocc,⇥ 8.5 7.8 2.5 2.3
a/� 9.4 11.5 12.0 14.7

a factor six lower than for Model I. Of particular importance
is the prediction that the average number of dendrimers per
cluster required to stabilize the crystal is reduced by more
than a factor three in Model II. It is hence to be expected
that although qualitatively Models I and II are similar, the
second has the advantage of being more easily accessible by
simulations, due to its smaller cluster sizes.

IV. THE LIQUID PHASE

To investigate systems at finite concentrations, we employ
Monte Carlo simulations in the canonical ensemble, in which
a constant number of N dendrimers are simulated at a fixed
volume V and fixed temperature T . In the case of the liquid
phase, N = 250 dendrimers are simulated in a cubic simulation
box with periodic boundary conditions.47 The Monte Carlo
moves consist of individual monomer translations as well
as random translational and rotational moves of whole
dendrimers. The initial configurations are obtained by slow,
incremental compression of equilibrated systems at lower
densities. Since the liquid phase for Model I has already been
discussed in detail in Ref. 7, we will concentrate here on the
results for Model II at three representative densities.

The system with the lowest density, ⇢R3
g = 0.046,

corresponds to a gas or low density fluid. The intermediate
system has a density ⇢R3

g = 0.138, which slightly exceeds the
MFA-predicted freezing density ⇢⇥R3

g = 0.133. The highest
density, ⇢R3

g = 0.323, that we consider for the above liquid-
like behavior, lies about 35% above the overlap concentration
and is well beyond even the upper limit of stability of the
homogeneous fluid, ⇢�R3

g = 0.185, predicted on the basis
of the e↵ective dendrimer pair-interaction. In fact, it turns
out that this lies above the crystallization density found by
MC simulations of the microscopic model, see Section V.
Accordingly, at this density we are looking into a metastable
fluid, owing its existence to the particular preparation of the
system.

In order to characterize the fluid phase, we consider the
radial distribution function g(r) of the centers of mass of
the dendrimers as shown in Fig. 3. The striking emergence

FIG. 3. The radial distribution function g (r ) for the centers of mass of the
dendrimers of Model II for three di↵erent densities, as indicated in the panel.
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of a broad peak located at zero-distance upon increasing the
density is a feature that signifies the existence of clusters
in these systems and implies that the centers of mass of
the dendrimers can get arbitrarily close to one another. At
large separations, one finds the typical oscillatory behavior
known from conventional fluids, for which upon increasing
the density the fluid gets locally more structured. The fact that
the height of the central peak increases non-monotonically
with density has no particular significance, as it is only
after multiplication with the density and performing the
corresponding 3D integration up to the first minimum that
the peak corresponds to the average number of dendrimers
per cluster.

The number of particles per cluster has been calculated
counted by employing the algorithm that was described in
detail in Ref. 7, which allows one to separate clusters that share
a common particle. The resulting probability distributions
P(Nocc) of the cluster occupation numbers Nocc and the
probability P(D 2 Nocc) for a dendrimer to be found in a
cluster of size Nocc are, together with representative snapshots
of the simulations, shown in Fig. 4 for the three densities
considered. Combining the information from Figs. 3 and 4,
we find that the system with the lowest density indeed
behaves as a low-density gas. On average, the dendrimers
avoid one another due to the repulsion of the shell monomers,
but they do approach each other occasionally to form rare
clusters of up to five dendrimers. The relative probabilities
of these clusters indicate that the short-range attraction found
in the e↵ective pair-interaction does play an important role
in their stabilization. In fact, even at this low density where
about 90% of the dendrimers remain isolated, the most likely

multi-particle cluster for a dendrimer to be found in is of size
four. The clusters themselves are not well-defined in shape
and there is still a vivid in- and out-flux of particles, which
is also reflected by the shallow and broad minimum of the
g(r) between the central and first neighbor peak taking a finite
value of about 0.2.

Upon increasing the density to ⇢R3
g = 0.138, the cluster

size probability distribution changes significantly. The most
prominent size is still the single dendrimer cluster, but it
contains only about 15% of all the particles, whereas 50%
of all dendrimers is found to be in a cluster of size four.
The first minimum of g(r) drops to a value of 0.02, which
implies more well-defined clusters, as can also be seen from
the corresponding snapshot. An increased density also results
into enhanced stabilization of the formed clusters, allowing
them to grow up to six dendrimers and resulting in a more
pronounced first-neighbor peak in the g(r) at a distance
r � 3Rg .

At the highest density, ⇢R3
g = 0.323, where, according

to the MFA-prediction, the system should already have
crystallized, almost no single dendrimers exist. The cluster
size distribution shifts to larger values and results in an average
cluster size of 4.7 dendrimers. As can be readily seen in the
snapshot, the clusters themselves are now easily identifiable,
and the first neighbor peak in the radial distribution function
is shifted to r � 2.8Rg . In the range Rg . r . 2Rg a depletion
zone arises, in which g(r)  0.01, separating dendrimers
within the same cluster from those belonging to a neighboring
cluster. The fact that the radial distribution functions does
not vanish completely implies that an exchange of individual
dendrimers between clusters does take place.

FIG. 4. Typical snapshots from the simulations of Model II systems at densities (a) ⇢R3
g = 0.046, (b) ⇢R3

g = 0.138, and (c) ⇢R3
g = 0.323, where the generation

0, 1, and 2 monomers (not drawn to scale) are shown in black, blue, and red, respectively. (d) presents the probability P(Nocc) of a cluster being formed by Nocc
dendrimers. (e) shows the probability P(D 2 Nocc) for a dendrimer to be found in a cluster of size Nocc.
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No spontaneous crystallization was found in the system,
despite the fact that visual inspection [e.g., of Fig. 4(c)]
gives the impression of local, BCC-type ordering. This is not
surprising, since it is known also from simpler systems that
the compatibility between box size/shape and lattice constant,
as well as other finite size e↵ects can hinder the spontaneous
formation of periodic crystals in a simulation. In our case,
these di�culties are exacerbated by the fact that the crystals
have multiple and variable occupancy and that the dendrimers
would have to di↵use and self-organize on the cluster sites,
making thus the process computationally very expensive.
Still, the broad depletion region between neighboring clusters
found at the highest density is an indication of an incipient
order in which the clusters are well-separated from one
another, as it happens for periodic crystals. In the absence of
spontaneous crystallization, di↵erent computational strategies
to investigate the formation of cluster crystals have to be
employed. These are presented in Sec. V.

V. CLUSTER CRYSTALS

The formation of cluster crystals in the e↵ective pair-
potential picture of the Q±-class is a well-established fact.18,20

Given the indications of the cluster fluid seen in Sec. IV,
it is only natural to ask whether the models of amphiphilic
dendrimers at hand can form stable cluster crystals. As a
first step to answering this question, we artificially construct
such crystals by hand and analyze their stability. Although
it is not a priori clear which crystalline structure would
be stable, we will limit ourselves to considering the BCC
and FCC crystals only, on the one hand because they
are the most common structures and on the other because

they are the ones occurring within the e↵ective-potential
picture.18,20 A second simplification we make is to consider
perfect cluster solids, i.e., we place on every lattice site
of the crystal monodisperse clusters, all sharing the same
occupation number Nocc. The crystals are constructed by
placing the centers of mass of exactly Nocc dendrimers with
randomized conformations on each of the lattice positions. For
computational reasons we restrict ourselves to mainly 23 = 8
unit cells with periodic boundary conditions, but some of the
results have been verified for a larger system size of 33 = 27
unit cells.

Each of the crystals that have been considered can be
identified by its structure, BCC or FCC, and a combination
of density and occupation number (⇢,Nocc). For ordinary
crystals, the density would have been su�cient, but for
cluster crystals there are di↵erent combinations of cluster
occupancy and lattice distance corresponding to the same
density. Of course, at thermodynamic equilibrium there is
no additional degree of freedom, since Nocc is selected as
the value that minimizes the free energy; however, this value
is not known a priori. In an initial equilibration phase, the
centers of mass are constrained by an external potential,
while the internal structure of all dendrimers is allowed
to equilibrate. Thereafter, the constraints on the centers of
mass are slowly released and the simulations are continued
in the unconstrained canonical ensemble. Two examples of
crystals that are mechanically stable are shown in Fig. 5, in
both a monomer-resolved representation and a coarse-grained
fashion by using the centers of mass of the dendrimers only;
the latter enables one to identify the clusters more easily.
The larger spheres indicate the range in which the centers
of the dendrimers are found, and they therefore represent

FIG. 5. Simulation snapshots of
mechanically stable cluster crystals
of Model II. Panel (a) shows a
BCC crystal with Nocc= 4, ⇢R3

g
= 0.281 and (b) a FCC crystal with
Nocc= 10, ⇢R3

g = 0.480. For clarity,
monomers are not drawn to scale.
Panels (c) and (d) depict the same
systems, but only show the centers of
mass of the dendrimers (green) and the
size of clusters.
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the localization and confinement of dendrimers within their
cluster.

For both density and cluster occupation, there exist lower
limits below which the dendrimer crystals are found to be
mechanically unstable. In the former case, the cluster positions
start di↵using, whereas for the latter case the clusters cannot
withstand the external pressure by other clusters, which are
too close to them, and start to merge. These processes are
relatively fast in destabilizing the initial perfect ordering.
There is, however, a wide range of parameters for which
the cluster crystals remain mechanically stable, even for
simulations times orders of magnitude longer than for the
unstable ones. This gives rise to a mechanically stable cluster
crystal region as is shown in Fig. 6 for Model I in the case of
FCC crystals.

Although based on a limited set of data points, the
minimum density that is required to stabilize a cluster crystal
is estimated to be ⇢R3

g � 1.0. This value lies below that of
the Kirkwood instability at ⇢�R3

g = 1.094 but is significantly
higher than the predicted freezing density ⇢⇥R3

g = 0.785 that
was estimated based on the e↵ective pair-interaction for Model
I (see Table II). The MFA-prediction for the cluster occupancy,
Nocc � 8 at freezing, is very close to the minimum occupancy
required for mechanic stability. This proximity of the two
values already shows that a theory based on e↵ective pair-
interactions can serve as a guideline to estimate the relevant
range of parameters. At the same time, however, it should be
kept in mind that mechanical stability is a necessary but not
su�cient requirement to guarantee thermodynamic stability.

The requirement of more than 8 dendrimers per cluster
to stabilize a cluster crystal is very CPU-demanding; this is
the main reason for having introduced Model II in Ref. 39,
which predicts clustering at lower densities and occupancies,
and thus enables us to perform a more detailed analysis
of the phase behavior. The main results for the mechanical
stability of the BCC and FCC cluster crystals in this particular
model are shown in Fig. 7. The results are similar to those
of Model I and, again, at the predicted freezing density
⇢⇥R3

g = 0.133 (vertical dotted lines in Figs. 6 and 7) the
crystals are unstable. Contrary to the case of Model I, even

FIG. 6. The cluster size Nocc versus density ⇢R3
g phase diagram of mechani-

cal stability for FCC crystals of Model I. Stable systems are marked in green,
unstable systems in red. The dotted and dashed-dotted lines are the densities
for the predicted freezing and the Kirkwood instability, respectively.

FIG. 7. Mechanical stability diagrams for (a) BCC and (b) FCC crystals
for Model II. Stable systems are marked in green, unstable in red or blue.
Systems for which the free energy was computed are marked with a black
circle. The dotted, dotted-dashed, and dashed lines represent the theoretically
predicted freezing densities, Kirkwood instability, and cluster occupancies,
respectively. The solid lines are the actual stable occupancies as function of
the density for either crystal types.

at the MFA-Kirkwood instability (dashed-dotted lines), the
crystals are not mechanically stable. In addition, the predicted
minimum cluster occupancy is underestimated, because no
crystal with fewer than four dendrimers per cluster could be
stabilized.

Even more intriguing is the fact that the region of stable
crystals is bounded from above in both cluster occupation
and density, which is absent in the case of the e↵ective
pair-interaction description.2,17,19 The two upper limits are
described by two di↵erent scenarios and their existence is a
direct consequence of the breakdown of the pair-interaction
approximation. For a few selected densities, the cluster
occupancy was probed at higher values, at the cost of larger
lattice distances. In such cases, the crystals became deformed
while keeping the cluster size intact, suggesting a preference
to form di↵erent crystalline structures from the one originally
imposed or a transition to di↵erent occupancy which was
hindered by finite box-size e↵ects. Increasing the density while
keeping the cluster occupancy fixed, in other words reducing
the lattice spacing, resulted in a situation where the clusters
start to percolate. The three di↵erent types of instability
we found — melting, transforming, and percolating — are
indicated by di↵erent colors in Fig. 7. Whether deformation or
percolation would be the final outcome or just are precursors
of a di↵erent phase is yet unknown. Irrespectively, this finding
signifies that cluster crystals built of Model II-dendrimers
can only be mechanically stable in a limited region of the
density-occupancy space.

VI. STRUCTURAL ANALYSIS

We have seen in Sec. V that a description of cluster
crystals based on the validity of the e↵ective pair-interaction
from the infinite dilution limit fails to yield correct results
for higher densities. The reason must lie in the fact that
the dendrimers undergo substantial deformations as density
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FIG. 8. The radius of gyration Rg (⇢;Nocc) of Model II dendrimers in (a) BCC and (b) FCC crystals. The open symbols denote the value for the
thermodynamically stable crystals at the corresponding densities. The horizontal line indicates the value Rg = 3.58� of the gyration radius of the dendrimers at
infinite dilution.

grows, so that the infinite-dilution e↵ective interaction loses
its validity. To investigate this further, we focus here on the
analysis of the internal structure of individual dendrimers
and its dependence on the density. To this end, we measured
a number of structural characteristics for Model II within
the various mechanically stable BCC and FCC clusters, as
indicated in Fig. 7. The first quantity is the radius of gyration;
results are shown in Fig. 8 and reveal that in either crystal types
the radius of gyration Rg(⇢; Nocc) at fixed density ⇢ grows
almost linearly with the cluster occupancy Nocc. In addition,
it diminishes on increasing the density at constant Nocc. Both
trends can be understood from the cluster crystal structure.
Fixing the density and increasing the number of dendrimers
per cluster brings about an increase of the lattice spacing
between the cluster-occupied crystal sites. This leads to a
decrease of the forces on a cluster exerted by the neighboring
ones and thus the dendrimers in the cluster swell. Increasing
⇢ at fixed Nocc causes the lattice constant to diminish and the
opposite e↵ect, i.e., a shrinking of the dendrimers, results.
It should be stressed that these trends are not equilibrium
properties of the system. As will be demonstrated by means of
a free energy calculation in Sec. VII, there exists an optimal
cluster size as function of the density for each crystal — the
one that minimizes the crystal’s free energy among all cluster

sizes at given ⇢. In Fig. 8 the equilibrium results for each of the
densities are indicated by open symbols. Surprisingly, these
equilibrium values almost coincide with the value Rg = 3.58�
of an isolated dendrimer.

The radius of gyration Rg is only a very rough measure
of the structure of the molecule, merely expressing its overall
size. More detailed information can be obtained by the
monomer profiles of each dendrimer. In Fig. 9, we show
single-dendrimer density profiles c(r) of the core and shell
monomers with respect to the center of mass of a dendrimer
in a cluster crystal. Results pertain to a FCC cluster crystal
at density ⇢R3

g = 0.281 for di↵erent cluster occupancies in
Fig. 9(a) and to fixed cluster size Nocc = 8 and various densities
in Fig. 9(b), where it should be noted that the combination
⇢R3

g = 0.281 and Nocc = 8 is very close to the thermodynamic
equilibrium. The profiles measured for the BCC crystal are
not shown, but they coincide almost perfectly with the FCC
profiles for matching density and cluster size.

The increase in radius of gyration seen in Fig. 8, on either
increasing the cluster size at fixed density or on lowering the
density at fixed cluster size, can also be observed in Fig. 9 of
single dendrimer density profiles c(r) by the decrease in the
r = 0 maximum of the core distributions, and a broadening
and shifting to larger distances for the shell distributions.

FIG. 9. Single-dendrimer monomer-density profiles ⇢(r ) with respect to the Model II-dendrimer center of mass in FCC cluster crystals for (a) fixed density
⇢R3

g = 0.281 and (b) fixed cluster size Nocc= 8. Solid lines correspond to the core monomers, dashed curves to the shell monomers. Insets are enlargements
focusing on the shell monomer profiles. For comparison, the density profiles as found for an isolated dendrimer are shown in black.
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FIG. 10. Radial distribution function g (r ) for the center of mass of Model II
dendrimers in various FCC crystals, where the distance r is given in terms of
the lattice constant a.

The profiles for an isolated dendrimer are indicated as well,
and they demonstrate that although the radius of gyration in
equilibrium is almost constant, the actual internal structure
of the dendrimer is di↵erent and depends on both the overall
density and cluster occupation number. In particular, the
back-folding of shell monomers into the core observed for
an isolated dendrimer is strongly suppressed in the cluster
crystals. The core and shell monomers have an enhanced
propensity to segregate in the cluster crystals, thus forming
a somewhat more compact and denser core as well as a
more distant and lower density shell compared to the isolated
molecule. This behavior arises from the interactions between
dendrimers within the same and from surrounding clusters.
The two tendencies of the core (more compact) and the shell
(more spread) monomers are antagonistic to one another as
far as their e↵ect on the gyration radius of the whole molecule
is concerned. Accordingly, they bring about the finding that
in equilibrium cluster crystals the radius of gyration remains
nearly una↵ected with respect to its value at infinite dilution
despite the fact that the dendrimers’ conformations are a↵ected
by the finite concentration in very significant ways.

The correlation between the centers of mass of the
dendrimers is measured by means of the radial distribution
function g(r). This quantity, for various FCC crystals, is

FIG. 11. Density profiles of the centers of mass, core, and shell monomers
of Model II-dendrimers with respect to the center of mass of the cluster for
a BCC crystal with ⇢R3

g = 0.281 and Nocc= 8. The solid curves represent
contributions stemming from the same cluster, whereas the dashed curves in
the inset are contributions from dendrimers belonging to di↵erent clusters.

shown in Fig. 10. By plotting the distance in units of the
lattice constants, the curves essentially superimpose, with
only minor changes due to the di↵erent average number of
dendrimers per cluster Nocc at short ranges, and slightly more
compact clusters at higher densities. The latter can be seen
from the peak at r = a/

p
2, corresponding to dendrimers in

the nearest-neighbor clusters. The relatively broad depletion
zone in the range 0.2–0.5a allows us to easily identify the
cluster dendrimers belong to. At the same time, it facilitates
the determination of whether a specific density and cluster
size combination is mechanically stable or not.

The radius of gyration, density profiles, and correlation
functions discussed above and shown in Figs. 8-10 are all
properties where the individual dendrimers are the focus of
attention. The stability of cluster crystals, however, crucially
relies on the interplay between the dendrimers within the
entities that form the crystal. To this end, we will for the
remainder of this section examine the collective behavior of
dendrimers by analyzing the structure of the clusters. Fig. 11
shows the density profiles ⇢(r) of the center of mass of
dendrimers, the core, and the shell monomers with respect
to the center of mass of the cluster for a BCC crystal at
density ⇢R3

g = 0.281 and cluster size Nocc = 8. In agreement

FIG. 12. Radial density profiles for all core and shell monomers with respect to the center of a mass of the cluster in BCC crystals for various combinations of
average cluster size and density. The solid curves and dashed curves correspond to profiles of core and shell monomers, respectively.
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with the findings illustrated in Fig. 10, which show a clear
separation between the clusters, we find here that also the core
and shell monomers belonging to di↵erent clusters remain
well separated; only a very small fraction of shell monomers
from the nearest-neighbor clusters overlaps. Furthermore, the
two species of monomers within the same cluster hardly mix,
forming a dense core cluster, where the core consists mainly
of core monomers, surrounded by a lower density cloud of
shell monomers. Although the shell is formed only by the
second generation monomers, it nevertheless shows a double
peaked structure. This is another illustration of the fact that
the internal structure of these particles within the dense cluster
crystal is very di↵erent from the one at infinite dilution.

A few additional, selected density profiles of core and
shell monomers measured with respect to the center of mass
of the cluster in BCC crystals are shown in Fig. 12. Both
an increase of the density at fixed occupation number and a
decrease of the occupation number at constant density, result
in a shrinking of the inter-cluster separation. Concomitantly, a
more compressed distribution of cores is obtained under these
changes. The profiles of the cluster shell, however, are a↵ected
more and we can find either single or double layered structures.
The latter are formed mainly at the higher densities and suggest
the increasing importance of the steric interactions between
shell monomers within a cluster. The crowding of these
repulsive monomers is probably responsible for mechanically
instability of the cluster crystals at high densities, indicated in
Fig. 7.

VII. THERMODYNAMIC STABILITY

The preceding findings, summarized in Figs. 6 and 7,
establish that in the density-occupation plane, a region
of mechanically stable cluster crystals exists. Mechanical
stability is a necessary but not su�cient condition for
thermodynamic stability. The unstable crystals that melt,
deform, or start to percolate within relatively short simulation
times are, evidently, thermodynamically unstable. However,
for those crystals that remain stable within the simulations,
free energy calculations are required to determine which
one possesses the lowest free energy among all competing
candidate phases.

To compute the Helmholtz free energy, the technique of
thermodynamic integration can be employed.47,48 This method
relates the free energy of the system at hand with a suitably
chosen reference system of known free energy. With �({~r})
denoting the interaction of the system under study in terms
of the set of all particle coordinates, {~r}, and �ref({~r})
its counterpart for the reference system, thermodynamic
integration requires a smooth interpolation connecting the
two. The simplest choice is given by a linear interpolation via
a dimensionless parameter �

��({~r}) = ��({~r}) + (1 � �)�ref({~r}), (9)

which for � = 0 and � = 1 corresponds to the reference system
and to the system of interest, respectively. Using this family of
systems, the Helmholtz free energy F can be obtained from

F = Fref +

⌅ 1

0
d�h� � �refi�, (10)

where Fref is the free energy of the reference system and h. . .i�
denotes an ensemble average for a system interacting via
��({~r}). Since for determining the thermodynamic stability
of the various crystal structures, only their di↵erence in free
energy is required; the actual free energy of the reference
system does not have to be evaluated, provided the same is
being used for all candidates.

One crucial restriction on the reference system is that
while varying the parameter � the system should not exhibit
a first-order phase transition. We therefore have to ensure that
the reference system is thermodynamically stable in the target
crystalline structure. An oft-employed reference system for
the computation of free energy of crystals is the Einstein solid,
in which each particle is bound by a harmonic potential to
a unique lattice site.47 Such an approach allows to formally
separate the total interaction of the reference system in two
contributions

�ref = �int + �lattice, (11)

which are the internal interaction between the particles and
the external potential coupling the particles to the underlying
crystal structure.

For the present systems that exhibit cluster crystals,
the particular choice of an Einstein crystal would not be
suitable, due to the intrinsically di↵erent nature of a cluster
crystal. Contrary to usual solids, here multiple particles can be
assigned to a single lattice site and, in addition, they are able to
hop to neighboring lattice positions.23 Therefore, we employ
a modified version of the method introduced by Mladek
et al.,49 which is based on an ideal gas with confinement cells
compatible with the crystalline structure under consideration.

A confining potential is acting on the center of mass
~r (cm)
i of each dendrimer i. If we now denote by ~Rj a lattice

position of the underlying, perfect crystal structure we choose
to consider, the interaction between the dendrimers and the
lattice positions can be written as

�lattice =

NX

i=1

�conf

 
min
j

���~r (cm)
i � ~Rj

���
!
, (12)

where �conf(r) is the interaction strength between the center
of mass of a dendrimer and the lattice position. Its functional
form is not unique, but a particularly simple and convenient
choice is given by a step function

�conf(r) =
8><>:

0 r  Rcut

Umax r > Rcut
, (13)

with Rcut a suitably chosen width of the potential well as is
schematically shown in Fig. 13 for an one-dimensional analog.
The “free volumes” v0 = (4⇡/3)R3

cut around each crystal site
are not allowed to overlap and they must be small enough to
keep the crystals from melting. In order to make a reference
system that resembles the structure of the dendrimer crystals
as much as possible, we choose Rcut = 2�, which is the typical
width of the distribution of centers of mass of the dendrimers
in a cluster, as measured in the simulations that showed
mechanical stability (Fig. 7). The height of the energy penalty
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FIG. 13. One-dimensional, schematic representation of the confining potential used in the free energy calculations for cluster crystals. The solid curves represent
the density distributions around the lattice sites (black circles). The quantityUmax is the barrier height, see Eq. (13), whereas v0 indicates the volume left between
neighboring barriers in which the particle is free of external influences.

was fixed to a value Umax = 10 kBT . This finite value allows
for dendrimers to explore the full volume of the simulation
box and hop to clusters located at neighboring lattice positions
and is necessary to hold the multi-occupancy crystal together
and relax its site occupation.

The process of hopping requires a dendrimer to be
removed from one and inserted within another cluster. The
inter-monomer interactions by means of the Morse potential
make this a rare event. In order to facilitate such hopping
events, we can make use of the freedom provided by the
choice of the internal interaction �int, restricting it to the
FENE potentials between bounded monomers of the same
dendrimer only, i.e.,

�int =
X

(i j)
�FENE

µi⌫ j

��
~ri � ~r j

��
, (14)

where ~ri and ~r j are the positions of the monomers i and j,
respectively, and µi and ⌫j the corresponding types labels for
a core or shell unit. The summation runs over all pairs (i j)
of monomers that are chemically bonded. Consequently, in
the reference system there are no intermolecular interactions,
and the intramolecular interactions are only there to maintain

the connectivity. This allows for a rejection free movement of
dendrimers to di↵erent clusters.

The choice of �ref means that the reference system
consists of non-interacting ideal dendrimers confined to form
clusters in the vicinity of one of the lattice positions ~R. The
average number of dendrimers per cluster can be controlled
by choosing the number of dendrimers and the number of
lattice positions. The free energy of the reference system
itself consists of two contributions, which are corresponding
to the internal degrees of freedom of the now ideal dendrimer
and that of the external confinement of point particles. Since
only the Helmholtz free energy per particle needs to be
compared for the thermodynamic stability, the internal degrees
of freedom will give rise to the same contribution for all
systems.50

Using the procedure detailed above, free energy
calculations were performed for FCC and BCC cluster
crystals of Model II dendrimers with integer occupation
numbers. Various densities were selected, lying in the range
of mechanical stability, and are indicated in Fig. 7 by
black circles. The results from this analysis are presented in
Fig. 14(a), where for several densities the excess free energy

FIG. 14. (a) The excess free energy per particle, � fex, as a function of the cluster occupancy Nocc. The di↵erent colors correspond to constant overall densities.
The equilibrium properties extracted are the (b) average cluster occupation Nocc, (c) lattice constant a, and (d) the excess free energy per volume �Fex/V as
function of the overall density ⇢R3

g . Solid and dashed lines correspond to BCC and FCC crystals, respectively.
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per particle is shown as function of the cluster occupation
number. For each of these densities there is a clear minimum
visible, demonstrating that there is an optimal cluster size in
the crystals, as dictated by thermodynamics: the quantity Nocc
is a self-adjusting parameter of the system, which for every
density attains the value minimizing the system’s (Helmholtz)
free energy. From a fit through the data, this optimum
value was determined for each of the densities considered.
Results in Fig. 14(b) show that the cluster size grows roughly
linearly with the density. This is in agreement with the MFA-
predictions based on the e↵ective pair interaction but, contrary
to these predictions, an extrapolation of the line to vanishing
densities shows that the line does not go through the origin.29

Concomitantly, the equilibrium lattice spacing aeq, shown in
Fig. 14(c), decreases on increasing the density, which is at odds
with what is expected theoretically,29 where the lattice constant
remains density-independent. This is another indication that
the many-particle interactions at play in dense dendrimer
solutions lead to deviating behavior from the structure-less
particles assumed by an infinite-dilution e↵ective interaction
description. However, the e↵ective interaction is remarkably
successful not only for predicting the occurrence of cluster
crystals in the first place but also for making quantitatively
correct estimates regarding the range of densities and lattice
occupancies for which cluster crystals form and attain
thermodynamic stability with respect to the fluid phases
at lower densities. As such, and in combination with the
fact that the estimates are analytically known, it is of great
value for providing reliable guidance for searches within
more detailed, microscopic approaches. In the final panel,
Fig. 14(d), the excess free energies per particle in equilibrium
for both the BCC and the FCC crystal are compared, indicating
that the FCC crystal is the more thermodynamically stable
one. However, extrapolation of the data hints at a possible
preference for BCC crystals at densities even higher than the
ones studied here.

In the discussion above, we found that the average cluster
occupation in equilibrium by assuming it to be a continuous
rather than integer variable. There are two arguments to
justify such non-integer occupation numbers. The first is
a coexistence of two perfect crystals with di↵erent but
integer occupation numbers as is, for instance, found at low
temperatures in GEM-models.21,22,51 The second possibility is
that, within a crystal, the average occupation number is not
fixed, but there is actually a distribution of di↵erent cluster
sizes present, which are either ordered or randomly positioned
within the overall crystalline structure. In order to homogenize
the cluster size distribution, clusters have to be formed
or dissolved, and dendrimers need to be redistributed over
di↵erent clusters via the hopping process. Although a detailed
analysis concerning this issue has not been performed yet,
preliminary results suggest the latter scenario. This assertion
is based on the observation that crystals with artificially created
defects remained mechanically stable. The defects considered
included perfect crystals with an individual cluster containing
a di↵erent number, either smaller or larger, than the rest of the
system, but also the removal of a complete cluster. In all these
cases defects appeared not to have any significant e↵ect on the
surrounding crystal. Only for the lowest occupation number

Nocc = 4 the removal of a cluster resulted in a situation where
dendrimers from neighboring clusters di↵used to the empty
space in order to heal the defect.

VIII. CONCLUSIONS

We have demonstrated by means of computer simulations
that the formation of soft cluster crystals is not merely a
mathematical property of the Q±-class of model interaction
potentials, but it can be found for realistic models of relatively
simple macromolecules. In particular, we have shown this
to be the case for second generation amphiphilic dendrimers
by explicit free energy calculations, using a thermodynamic
integration method specifically designed for these type of
phases. Upon augmenting the density, the model dendrimers
extensively discussed here were found to form a cluster
fluid in which individual clusters can contain up to six
interpenetrating dendrimers. At about the dendrimer overlap
density, (4⇡⇢R3

g)/3 � 1, these clusters form crystal structures.
Spontaneous crystallization would be a slow and CPU-

demanding process. On these grounds, we examined the
stability of artificially constructed BCC and FCC cluster
crystals for various densities with constant cluster size and
found a region where such crystals remain mechanically
stable. Within this stable region, the optimal cluster size and
lattice constant were determined as function of the overall
density by means of thermodynamic integration. The results
showed that, on increasing the density, the average equilibrium
cluster size grows, while the lattice constant decreases. The
latter is di↵erent from the Q± models, where the lattice
spacing of the cluster crystal remains density-independent,
and is due to the fact that the e↵ective pair-interaction is
density dependent. In addition it was found that the FCC
crystals are thermodynamically more stable than the BCC
crystals.

We have restricted the free energy computations to BCC
and FCC crystals only, which are considered to be the most
likely candidates, as indicated from arguments based on
density-functional considerations in the e↵ective interaction
picture.29 Hence, it is possible that a di↵erent type of crystal
arrangement might have an even lower free energy. In addition,
we also restricted ourselves to cluster crystals with an integer
cluster size. Since crystals appear to be stable with respect
to various defects, it is plausible that at any given density
the stable crystal will be formed with a narrow cluster size
distribution, rather than a coexistence between two intertwined
crystals with a di↵erent, perfect occupation numbers. This is
also supported by a large similarity between the internal
dendrimer and cluster structures, as evidenced by various
density profiles, which suggest an insensitivity with respect to
small local distortions or inhomogeneities.

The theoretical description of soft cluster crystals of
macromolecules, based on the e↵ective pair interaction in the
infinite dilution limit, yields reliable predictions on the ranges
of the thermodynamic parameters for which cluster crystals
can be found, although the precise values are influenced by
contributions beyond the pair-potential approximation. In the
case of Model II, the density at freezing is underestimated
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significantly. It was predicted to be found at ⇢⇥R3
g = 0.133,

but even at the Kirkwood instability ⇢�R3
g = 0.198 of an

absolutely unstable liquid phase, neither the BCC nor FCC
cluster crystals could be mechanically stabilized. Although the
actual coexisting densities between fluid and crystal have not
been determined, the density of the least dense stable crystal
is estimated to exceed the value ⇢⇥ from MFA by about 60%.
We have refrained from performing a free energy calculation
of the fluid phase, since there is ample evidence that there
is a regime in which crystals do not melt in the simulation,
indicating their stability against the (cluster) fluid. Also the
number of dendrimers per cluster is underestimated in the
MFA and is actually found in the microscopic simulations to
be twice as large. That said, the lowest cluster occupancies
required to stabilize any crystal was only four dendrimers.

The clusters that form the building blocks of the crystal
are well defined and easily identified due to the localization
of the centers of mass of the dendrimers in a small spherical
region with a radius of approximately half that of the radius
of gyration of a single dendrimer. Whereas in an isolated
dendrimer shell monomers can fold back into the core region,
this is no longer the case once they are located in a cluster
of several dendrimers. The solvophobic nature of the core-
monomers results in a dense region that is well separated from
all the surrounding shell monomers. The shell-monomers are
less localized and can, depending on the overall density and
occupation number, be found in a broad fairly homogeneous
spherical shell or a double layer structure. The size of the
individual dendrimers measured by means of their radius
of gyration increases with decreasing density or increasing
occupation number in the various mechanically stable crystals.
It is an intriguing finding that in the optimal BCC and
FCC cluster crystals, the radius of gyration of the Model
II dendrimers is within 1% identical to that of an isolated
dendrimer.

Given the limitations of the e↵ective pair-potential
approach and the importance of the monomer-resolved detail,
it is natural to pose the question of what happens at densities
even higher densities than the ones discussed here. In the range
⇢R3

g & 0.6, BCC cluster crystals could not be stabilized, but
formed percolating structures of clusters. The thermodynamic
integration results indicate that the free energies of the BCC
and FCC crystals will be very close and hence like-wise
also the FCC phase might become unstable. One possibility
would be the formation of a di↵erent type of cluster crystal,
but another possibility would be the formation of lamellar
or bicontinuous structures by the core and shell monomers,
which would be a 3D analog for results found by Malescio and
Pellicane.52 This problem, however, falls outside the scope of
the current manuscript and is left for future work.
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