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Computer simulations of colloidal particles under flow
in microfluidic channels

Arash Nikoubashman,*ab Christos N. Likosc and Gerhard Kahla

We study the propagation of single, neutrally buoyant rigid spheres under pressure-driven flow by means

of extensive computer simulations that correctly account for hydrodynamic interactions. We first consider a

system geometry consisting of two parallel plane walls and achieve very good agreement with

experimental results [M. E. Staben and R. H. Davis, Int. J. Multiphase Flow, 2005, 31, 529]. In the second

part of our analysis, we simulate the flow of tracer particles through a hexagonal array of cylindrical

obstacles, whose axis lies parallel to the gradient–vorticity plane of the flow. We find that the presence

of the obstacles causes a significant slowdown of the tracer particles and that their velocities respond in

a highly non-linear way to an increasing pressure drop.
I Introduction

Particle transport in narrow channels is a problem of high
relevance in many biological and industrial processes, such as
blood ow,1 suspension ow2,3 and separation of size-dispersed
colloids at the micro- and nano-scale.4 With the advent of novel
microuidic devices, featuring cross-sectional dimensions on
the order of tens to hundreds of microns and lengths of centi-
meters, these systems have become much more accessible to
experiments.5,6 So far, a considerable amount of research has
been carried out for a variety of systems, ranging from DNA
analysis7–9 and microchip-based polymer electrophoresis10–12

over heat management13 to display technology.14

Despite the aforementioned advances, the fundamental
problem of how a single rigid sphere behaves under pressure
driven ow has only been studied recently by Staben and Davis,
where they have conducted systematic particle-tracking experi-
ments for a wide range of tracer sizes.15 One challenging aspect
of such experiments is that the tracer size can become compa-
rable to the channel diameter, rendering both the response of
the solvent and the particle–wall interactions very important. In
addition, the construction of microuidic devices has oen
focused on ease of fabrication without much consideration for
the entrance geometry of the microchannel, which can lead to
non-optimal distribution of particles in the microchannels.

From the theoretical point of view, this particular problem
has its roots in the related issue of how a spherical particle
propagates in the vicinity of a single wall.16 This problem was
ienna University of Technology, Wiedner

-mail: arashn@princeton.edu

ineering, Princeton University, Princeton,

ltzmanngasse 5, A-1090 Vienna, Austria

Chemistry 2013
then eventually extended by Faxén to the case of two planar
walls,17 but under the rather strict limitation that the particle is
placed on the centerline or at one-fourth of the distance
between the two walls. Ganatos et al. have worked towards a
more general answer to this question by decomposing the
problem into four parts:18,19 translation of a sphere without
rotation, rotation of a sphere without translation, and Poiseuille
and shear ow past a pinned sphere. For small Reynolds
numbers, Re, i.e. when the dynamics of the system is governed
by viscous forces as opposed to inertia, these individual
contributions can then be linearly summed up again to nd the
nal solution. This approximation however only provides an
accurate description for the ow behavior of rigid particles
whose surface has a distance of at least 10% of their radius from
either wall.

In more recent works, numerically more demanding tech-
niques, such as the Arbitrary Lagrangian–Eulerian method20

and boundary-integral (BI) algorithms,21 have been employed
successfully to predict the ow behavior close to the channel
walls. However, these techniques are not suitable to study more
complicated systems that involve, for instance, multiple tracer
particles or xed obstacles. Ghosh et al. have studied such a
conned system by means of Brownian dynamics simulation,
where an overdamped, two-dimensional particle has been
driven through a rectangular array of circular obstacles.22

Despite the two-dimensional nature of their simulations and
the lack of hydrodynamic interactions (HI), they have captured
essential properties of such conned systems, such as negative
differential mobilities and unconventional asymptotic
behaviors.

In this work, we rst consider a slab-like channel consisting
of two parallel planar walls, and study the motion of a single,
neutrally buoyant colloidal particle under Poiseuille ow at
low-Reynolds number conditions. To this end, we carried out
Soft Matter, 2013, 9, 2603–2613 | 2603
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extensive computer experiments that correctly take hydrody-
namic interactions into account. The employed simulation
technique reproduces the experimental results for rigid spher-
ical particles within the free channel remarkably well.15

There is a growing interest to study microuidic systems at
Reynolds-numbers well above unity in both experiments23,24 and
simulations.25 Therefore, in the second part of our work, we
analyze the motion of tracer particles through hexagonal
micropost arrays at Re T 1.0. We establish that the presence of
hindrances causes a signicant slowdown of the colloidal
particles, and that their velocities are not proportional to the
applied pressure gradient anymore, but respond to it in a highly
non-linear fashion. We provide a detailed explanation of this
unusual behavior by considering the ow behavior around the
stack of pillars.

The rest of this paper is organized as follows. In Section II we
present our model and simulation method. Our results
concerning the planar walls are presented and discussed in
Section III, and the ones pertaining to the transport ow in
connement in Section IV. Finally, we summarize our ndings
and draw our conclusions in Section V.
Fig. 1 Schematic representation of the simulation setup for Poiseuille flow,
demonstrating the flow (z), gradient (x), and vorticity (y) directions, and the
resulting velocity profile for the pure solvent.
II Simulation method

In order to incorporate HI as faithfully as computationally
feasible, we have opted to employ a hybrid simulation approach,
in which standard molecular dynamics (MD) algorithms are
combined with the Multi-Particle Collision Dynamics (MPCD)
simulation technique.26,27 This choice is motivated by the large
disparities in the length and time scales, characteristic for the
solvent molecules and the embedded particles, which make
atomistic simulation studies prohibitively time-consuming. This
simulation scheme has already been successfully employed for
similar problems in capillary ow,28–31 and we will present a
detailed description of the method in what follows.

MPCD is a mesoscopic, particle-based simulation method,
consisting of alternating streaming and collision steps, where the
solvent particles are assumed to be non-interacting. The
coupling between the solvent and solute particles is realized
through momentum exchange. In what follows, we will denote
the properties of the solvent particles with lowercase letters and
the ones of the solute particles with uppercase ones. During the
streaming step, the solvent particles of unit mass m propagate
ballistically over a period of Dt:

ri(t + Dt) ¼ ri(t) + Dtvi(t), (1)

where ri(t) is the position and vi(t) the velocity of i-th solvent
particle at time t. In the collision step, the solvent particles are
rst grouped into collision cells and then undergo stochastic
collisions with particles within the same cell, updating thus
their velocities vi(t) into their new values vi(t + Dt) as:

vi(t + Dt) ¼ uj(t) + U(a)[vi(t) � uj(t)]. (2)

Here, uj denotes the center of mass velocity of the j-th collision
cell, while U(a) is a norm-conserving rotation matrix around a
2604 | Soft Matter, 2013, 9, 2603–2613
randomly chosen axis by some xed angle a. Due to the cell-
based nature of this algorithm, the spatial resolution of the HI
is determined by the mesh size of the collision cells, a. The
mean free path of a solvent particle is then given by l~Dt

ffiffiffiffi
T

p
,

and it has been shown in ref. 32 that Galilean invariance is
violated for l < a/2. Therefore, all lattice cells are shied by a
randomly chosen vector, drawn from a cube with edge length in
the interval [�a/2, +a/2] before each collision step. While the
above-described rules governing the solvent dynamics are
general, the simulation of specic ow proles requires special
care and will be discussed in what follows.

Poiseuille ow is driven by a pressure gradient in the ow (z)
direction, and is slowed down by viscous drag along both plates,
so that these forces are in balance. The walls are separated by a
distance Lx along the gradient (x) direction. Additionally, we
have applied no-slip boundary conditions for the solvent
particles with the walls along this direction, and periodic
boundary conditions in the vorticity (y) and ow direction for
both the solvent and the solute. The geometry of this setup and
the ow pattern generated for the pure solvent are schematically
illustrated in Fig. 1. From the computational point of view,
several methods exist for generating such a ow, for instance
forced,26,33,34 surface-induced, and gravitational31,35 approaches.
In our simulations, we adopted the latter technique, since the
other two methods lead to a considerable distortion of the
velocity-eld and density prole along the ow direction.35 In
this case, the external force acting on the unit volume of the
uid,F , is given byF ¼ 9sgẑ, where 9s is the mass density of the
solvent, g is the acceleration constant and ẑ is the unit vector in
the ow direction. The effect of F can easily be incorporated
into the streaming step as follows:

riðtþ DtÞ ¼ riðtÞ þ DtviðtÞ þ Dt2

2
gẑ; (3)

vi(t + Dt) ¼ vi(t) + Dtgẑ. (4)

The strength of the gravitational eld can be varied by
tuning g, and a steady Poiseuille ow builds up self-consistently
aer a short time when no-slip boundary conditions are applied
at the surface layers. For planar walls coinciding with the
collision cell boundaries, such conditions are conveniently
implemented by employing a bounce-back rule, i.e., the veloc-
ities of particles that hit the walls are inverted aer the collision.
This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2sm26727f


Paper Soft Matter

D
ow

nl
oa

de
d 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 o

n 
07

 F
eb

ru
ar

y 
20

13
Pu

bl
is

he
d 

on
 1

7 
Ja

nu
ar

y 
20

13
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2S

M
26

72
7F

View Article Online
However, for a more general system geometry the walls will not
coincide with, or will not even be parallel to the collision cell
boundaries. Furthermore, partially occupied collision cells can
also emerge from the cell-shiing, which is unavoidable for
small mean free paths l. Lamura et al. have demonstrated that
in such a case the bounce-back rule has to be modied by
relling of boundary cells with virtual particles.34,36 This feature
has been included in our implementation for all intersected
cells, including those cells which contained segments of the
cylindrical obstacles (see Section IV). Additionally, thermostat-
ting is required in any non-equilibrium MPCD simulation
whenever either isothermal conditions are required or viscous
heating can occur. The thermostat employed was based on
rescaling the velocities at the cellular level to maintain constant
temperature.31

Furthermore, we modeled the interaction between the solute
particles and the walls by a so repulsive potential of the form:37

UWðxÞ ¼
2

3
p3W

"
2

15

�
s

x

�9

�
�
s

x

�3

þ
ffiffiffiffiffi
10

p

3

#
; 0# x# ð2=5Þ1=6s

0; x. ð2=5Þ1=6s:

8>><
>>:

(5)

In the equation above, x denotes the distance between the
wall and the center of the solute particle, whose diameter is
given by s. The strength of the potential can be tuned via the
parameter 3W, and we chose a value of 3W ¼ 0.05kBT in our
simulations. The total external potential caused by both walls is
then given by the superposition Uext(x) ¼ Uwall(x) + Uwall(Lx � x).

TheMPCD parameters employed were a¼ 130� and l¼ 0.1a,
with 10 solvent particles per collision cell, and all simulations
were run at T ¼ 1. For the conventional MD-timestep, we
employed a Verlet integration scheme with DtMD ¼ 2 � 10�3,
whereas the MPCD time step was Dt ¼ 10�1, both measured in

the unit of time s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
. The unit of the acceleration

constant g is then given by a/s2. For these simulation parame-
ters, the dynamic viscosity of the solvent reads h ¼ 8.5skBT/a

3.
For experiments conducted at room temperature and channel
diameters of a few mm, the employed parameters describe an
aqueous solvent with h � 10�4 Pa$s.
A Coupling between solvent and solute particles

In MPCD simulations, many different approaches exist for
coupling a suspended solute particle to the surrounding
solvent, and for an extensive overview we refer the reader to ref.
27 and 38. A commonly used method is to sort the solute
particles into the collision cells, and include their velocities in
the rotation step.39 Although this approach seems over-
simplied at rst glance, it has been shown in ref. 40 that the
dynamics of the solute particles (polymer chains in this
particular case) are correctly reproduced when the associated
monomers are coupled to the solvent in this way. This tech-
nique has been employed for the simulation of, amongst others,
star polymers,41 dendrimers,31 and claylike colloids.28,29

However, the disadvantage of this method is that only the
solvent particles within the same cell are taken into account for
This journal is ª The Royal Society of Chemistry 2013
the coupling. Thus, the ow eld around the colloidal particle
cannot be resolved in detail: neither the fact that colloidal
particles push away the solvent nor depletion and lubrication
forces can be reproduced at any level.

Another possibility is to couple the solvent and solute
particles through repulsive central forces.33 However, such a
force has to be rather strong to prohibit the solvent particles
from penetrating the colloids. Therefore, when implementing
this procedure, a sufficiently small time step Dt is required in
order to resolve these interactions correctly, and a large number
of MD time steps are needed during the streaming step. An
additional drawback of this approach is that only slip boundary
conditions can be modeled with central forces. This deciency
can be easily understood on the basis of the following example:
rst, assume a buoyant colloidal particle surrounded by resting
solvent particles; then spin the colloid without moving it from
its original position. If the solvent particles are coupled to the
colloid only by a central force, they will not react to this rotation,
since the mutual distances remain unchanged during this
process. In reality however, the surface of a colloid is never
perfectly smooth, and therefore the solvent close to the colloid
will be dragged along. The detailed molecular origins of these
boundary conditions are subtle problems, and for a recent
review of the extensive literature on this subject, see ref. 42.

In this work, we pursue a different route, following the
arguments put forward by Inoue et al.,43 and couple the solute to
the solvent particles through the exchange of both linear and
angular momenta during the streaming step. First we check
aer each streaming step whether the new position of the i-th
solvent particle lies within a colloidal particle. If this is the case,
we stochastically deect the solvent particle from the colloid
and transfer the momentum to the colloid. In what follows, we
will discuss this procedure in more detail.

Fig. 2(a) depicts the collision process between a point-like
solvent particle and an impenetrable colloid, located at Rj(t). At
initial time t, the solvent particle is located at ri(t) and propa-
gates ballistically over a timestep Dt with velocity vi(t). Along its
trajectory, it crosses the surface of the colloid at the point r*. In
order to calculate the exact time and location of the collision, we
rst write down the equation of a sphere, centered at Rj:��r� Rj

��2¼ s2

4
; (6)

and of a linear trajectory in space, originating at ri:

r ¼ ri + Dxv̂i. (7)

here, Dx denotes the distance covered within Dt, and v̂i is the
normalized velocity of the solvent particle. We can then deter-
mine the exact location of impact, r* ¼ ri + Dx*v̂i, by solving
eqn (6) and (7) for Dx:

Dx*
1;2 ¼ �

�
ri$v̂i � Rj$v̂i

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri$v̂i � Rj$v̂i

�2

�ri2 � Rj
2 þ 2ri$Rj þ s2

�
4

r
; (8)

and inserting the smaller value of the resulting Dx*'s back in
eqn (7). However, this procedure is computationally quite
Soft Matter, 2013, 9, 2603–2613 | 2605
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Fig. 2 Schematic representation of the exact (a) and approximate (b) collision process between a solvent particle with index i and an impenetrable colloid j with
diameter s. The vector ri(t) denotes the position of the solvent particle at time t, while Rj(t) denotes the position of the colloid. The vector r* (red arrow) indicates the
point of impact in the case of the exact and approximate calculation (see text).

Soft Matter Paper

D
ow

nl
oa

de
d 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 o

n 
07

 F
eb

ru
ar

y 
20

13
Pu

bl
is

he
d 

on
 1

7 
Ja

nu
ar

y 
20

13
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2S

M
26

72
7F

View Article Online
expensive, and it has been shown in ref. 28 and 44 that such a
detailed description is not necessary. Instead, it is sufficient to
estimate the point of impact by the closest point on the surface
of the colloidal particle. This approximation is schematically
shown in Fig. 2(b), and r* is then simply given by:

r* ¼ Rj þ s

2

ri � Rj��ri � Rj

�� ¼ Rj þ s

2
ên: (9)

Then, we move the solvent particle with its reected velocity
for half of a time step. In order to implement the momentum
exchange between the solvent and the solute, one could try to
apply the same extended bounce-back collision rule that we
incorporated for the planar walls. However, Padding et al. have
demonstrated that these boundary conditions result in rota-
tional frictions that turned out to be larger than expected.44 This
deciency presumably stems from the fact that the colloidal
particles can move and therefore have a local temperature, in
contrast to the immobile walls considered in the preceding
subsection.

Alternatively, the solvent particles can be scattered from the
colloidal target in a stochastic way, where upon collision, the
particles are assigned random normal and tangential velocities
v*n and v*t respectively (relative to the velocity of the colloid). For
sufficiently small mean free paths, l � s, the probability
distribution for the scattered velocity is given by:28,43,44

p(v*n) ¼ mbv*nexp(�mbv*2n /2), (10)

p
	
v*t

 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mb=ð2pÞ
p

exp
	�mbvt

*2=2


; (11)

with inverse temperature b. Then aer the collision, the nal
velocities of the solvent particle i and the colloid j read:

vi(t + Dt) ¼ Vj(t) + Lj(t) � [r* � Rj(t)] + v*nên + v*t êt, (12)

V jðtþ DtÞ ¼ V jðtÞ þ m

M

�
viðtÞ � viðtþ DtÞ�; (13)

with the normal and tangential unit vectors ên and êt, and the
colloid's mass M. As a result of the additional tangential
component of the velocity that the colloidal particle acquires, its
angular velocity Lj(t) is modied as well, and aer the collision it
has a value given by:

Ljðtþ DtÞ ¼ LjðtÞ þm

I

�
r* � RjðtÞ

�� �
viðtÞ � viðtþ DtÞ�; (14)

with the moment of inertia I ¼ Ms2/10.
2606 | Soft Matter, 2013, 9, 2603–2613
III Propagation of a single particle through
a channel

In the rst part of our investigations, we analyzed the trans-
lational motion of a single colloidal particle in the presence of
pressure driven ow by employing the simulation approach
described above. In such a scenario, the Reynolds number is
given by:

Re ¼ sv0

h=9s
: (15)

here, v0 denotes the maximum velocity of the solvent (see
further below), and we conducted our simulations at Re ( 1.0.
We used a rectangular channel of size V ¼ (40 � 80 � 160)a3,
with a total of 512 � 104 solvent particles. Here, we deliberately
chose the extent of the channel to be comparatively large in the
vorticity (Ly) and in the ow direction (Lz), in order to minimize
nite size effects. Furthermore, lateral motions of the solute
particle along the gradient direction were inhibited by imposing
a harmonic potential:

UH(x) ¼ 20kBT(x � x0)
2, (16)

which restricts the particle's displacement x along the gradient
direction to be close to the designated position x0.

Poiseuille ow, enclosed by two parallel plates positioned at
x ¼ 0 and x ¼ Lx, is driven by a pressure gradient parallel to the
ow direction, and is slowed down by viscous drag along both
plates, so that the resulting forces are in balance. Under such
conditions, a parabolic velocity prole builds up:

vzðxÞ ¼ 9sg

2h
ðLx � xÞx: (17)

In eqn (17) above, the solvent viscosity h is determined by the
solvent mass density 9s and the collision rules, i.e., it is not an
input parameter to the simulation (see Section II). The velocity
prole vanishes at x ¼ 0 and at x ¼ Lx, and attains its maximum
value, v0, at the middle of the channel (x ¼ Lx/2), viz.:

v0 ¼ 9sgLx
2

8h
: (18)

For dispersed solute particles, the spatial velocity distribu-
tion is not readily available, since their ow behavior strongly
depends on, e.g., their concentration, shape and size. Addi-
tionally, the presence of the solute also affects the shape of the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 Translational velocityV0 of a centrally placed solute particle as a function of
its diameter s in a channel of width Lx. Black symbols show results from our MPCD
simulations, while the red open symbols display the results from ref. 21 obtained
with the BI method. The dashed line represents the results from eqn (20).
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ow prole, rendering the problem evenmore complex. For very
small dispersed particles (s � Lx) and at low solute concen-
trations, however, the geometric details of the solute can be
ignored and the velocity prole of the surrounding uid can
safely be regarded as unperturbed. Under such conditions, the
simplest way to derive the average translational velocity of a
dispersed particle is to integrate over the given velocity prole
vz(x) across the extension of the particle in the x-direction:
Table 1 Dimensionless translational velocities Vz(x)/v0 of a spherical dispersed par
the first column shows the inspected wall distances x, beginning with the central pla
cells containing dashes (“—”) represent unphysical configurations, where the solute p
presented values lies within 3%

x

s/Lx

0.05 0.1 0.2 0.3 0.4

Lx/2 0.999 0.996 0.987 0.968 0.9
7.0s 0.914 — — —
4.0s 0.646 0.956 — —
3.0s 0.515 0.841 — —
2.0s 0.365 0.642 0.955
1.6s 0.299 0.542 0.860 0.959
1.4s 0.265 0.488 0.799 0.932
1.2s 0.230 0.427 0.721 0.877 0.9
1.0s 0.195 0.366 0.629 0.791 0.8
0.9s 0.176 0.332 0.579 0.739 0.8
0.8s 0.156 0.296 0.525 0.681 0.7
0.7s 0.137 0.262 0.466 0.613 0.7
0.6s 0.118 0.224 0.390 0.533 0.5
0.575s 0.114 0.214 0.362 0.510 0.5
0.56s 0.112 0.206 0.349 0.493 0.5
0.55s 0.109 0.202 0.336 0.483 0.5
0.535s 0.107 0.196 0.319 0.467 0.5
0.52s 0.104 0.190 0.302 0.452 0.4
0.51s 0.102 0.185 0.285 0.440 0.4
0.505s 0.101 0.183 0.282 0.430 0.4
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VzðxÞ ¼ 1

s

ðxþs=2

x�s=2

vz
	
x0
dx0 ¼ 9sg

2h

"
Lxx� x2 � 1

3

�
s

2

�2
#
; (19)

where x denotes the distance of the particle's center to the lower
channel wall. If we place the solute exactly in the middle of the
channel (x¼ Lx/2), denote V0 h Vz(Lx/2), and normalize eqn (19)
by the unperturbed centerline velocity, v0, then we get:

V0

v0
¼ 1� 1

3

s2

Lx
2
: (20)

Strictly speaking, eqn (19) is unphysical, since different parts
of a rigid particle cannot move with different velocities. Instead,
the integration has the meaning that the resulting velocity Vz(x)
is the velocity with which the particle center is moving. Thus,
the parabolic prole of eqn (17) is not smooth anymore, but
rather a series of steps of width s. In Fig. 3, we compare the
analytic expression of a dispersed particle, given in eqn (20),
with our simulation data for the case that the particle has been
placed in the center of the channel. In this region, the curvature
of the velocity prole vanishes, and we observe that the motion
of small solute particles (s( 0.3Lx) is well predicted by eqn (20).
However, this picture eventually breaks down with increasing
particle diameter. In addition to the aforementioned de-
ciencies, a further reason for the failure of eqn (19) at large s

is the lack of any hydrodynamic coupling between the solute
and the solvent in this description; it is clearly visible from
Fig. 3 that this approximation leads to an overestimation of the
solute velocities, since the analytic result for V0 is systematically
larger than the values obtained from the simulations.
ticle for various diameters s. The first row contains the studied diameters s, while
cement Lx/2. Empty cells correspond to positions beyond the centerline Lx/2, while
article would extend into the system's walls. The measurement uncertainty of the

0.5 0.6 0.7 0.8 0.9

44 0.906 0.866 0.810 0.733 0.616
— — — — —
— — — — —
— — — — —
— — — — —
— — — — —

— — — —
39 — — — —
90 — — —
43 0.893 — —
81 0.851 0.862 — —
00 0.776 0.821 0.807 —
96 0.656 0.710 0.750 0.729
66 0.619 0.668 0.706 0.715
45 0.591 0.639 0.675 0.694
27 0.574 0.619 0.650 0.677 0.614
09 0.543 0.584 0.608 0.646 0.605
85 0.509 0.538 0.560 0.600 0.575
75 0.492 0.511 0.523 0.556 0.535
65 0.475 0.490 0.494 0.529 0.498
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Fig. 5 Average particle velocity, hVzi, normalized to the average fluid velocity,
hvzi, as a function of the particle diameter s. Black symbols show results from our
MPCD simulations, while the solid red curve shows the data of the BI calculations
presented in ref. 21. The red open symbols show experimental results from ref. 15.
The dashed curve represents the data from the asymptotic theory21 [cf. eqn (21)].
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On a more quantitative level, Table 1 shows the simulation
results for the dimensionless translational velocities Vz(x)/v0 of a
dispersed, spherical particle under Poiseuille ow. Here, we
varied the particle's distance x to the wall and considered
different values for the diameter s of the dispersed particle. As
expected, the retardation of the particle motion relative to the
uid motion is more sizable for larger particles and for particles
closer to either of the walls; this effect is due to the curvature of
the parabolic ow eld and the stress exerted by the solvent on
the solute in the narrow gap formed by its surface and the
channel wall.

Fig. 4 shows the velocity distributions Vz(x) for selected
particle diameters. A distinct narrowing and slowing down with
respect to vz(x) is visible, which becomes more pronounced as s
increases. This size-dependence can be traced back to the fact
that larger particles have less space for lateral movement in the
channel, and thus block the solvent ow much more severely
than smaller tracer particles do.

Another quantity of interest is the mean particle velocity in
the ow direction, hVzi, averaged over the channel width; this
quantity is oen more easily accessible in experiments than the
spatially resolved velocity prole Vz(x). In what follows, we will
compare this value to the average velocity of the pure solvent,
hvzi ¼ 2v0/3. Brenner and Gaydos have derived an asymptotic
expression for the average particle velocity of a uniform
suspension of small spherical particles under Poiseuille ow in
a tube of circular cross-section,45 and their calculation has been
extended to the present rectangular geometry in ref. 21:

hVzi/hvzi ¼ 1 + s/Lx � 2.02(s/Lx)
2 + O [(s/Lx)

3]. (21)

According to eqn (21), the average tracer velocity rst
increases with increasing particle diameter s, and then reaches
its maximum at s z 0.25Lx. This effect is due to the exclusion
from the slower-moving solvent particles within a distance of
Fig. 4 Velocity distributions Vz(x) for particle diameters s ¼ 0.2Lx (red), s ¼ 0.4Lx
(blue), s ¼ 0.6Lx (green) and s ¼ 0.8Lx (orange). The velocity profile of the pure
solvent (i.e. in the absence of solute particles) is indicated by the solid line (black)
[cf. eqn (17)].
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the radius of the tracer particle to either wall. With increasing s,
the trend reverses as retardation effects of the channel walls and
the curved velocity prole on large particles become progres-
sively dominant. hVzi decreases monotonically until it eventu-
ally drops below the average velocity of the pure solvent, hvzi, at
s z 0.5Lx. The s-dependence of hVzi is shown in Fig. 5, which
displays the results from the asymptotic theory, eqn (21), our
simulation data, as well as the numerical and experimental
ndings from Staben et al. (ref. 15 and 21, respectively). From
these data it is well visible that the asymptotic theory predicts
the averaged velocity correctly for very small particles but
considerably underestimates it for sT 0.15Lx. Compared to the
analytic expression, eqn (21), the simulation data reach
the aforementioned maximum for slightly larger particles
(sz 0.30Lx), and become equal to the average uid velocity hvzi
for s z 0.82Lx. We emphasize that our ndings are in almost
perfect quantitative agreement with previously established
numerical21 and experimental results,15 conrming the validity
of our approach. Thus, we can safely extend our method tomore
involved systems, containing, e.g., one or multiple obstacles.
IV Propagation of a particle through a
porous environment

The ow of simple and complex liquids through porous media
is ubiquitous in our daily lives, and a better understanding of
this process bears great importance in both fundamental and
applied science.46,47 For instance, the ow through highly
conned environments plays a major role in ltration,
groundwater ows and a variety of tertiary oil recovery
processes. To this end, we study in this section the detailed
motion of a tracer particle through an ordered porous envi-
ronment, by introducing cylindrical obstacles into our system. A
This journal is ª The Royal Society of Chemistry 2013
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similar setup has recently been used in microporous ow
experiments of micellar solutions.48–50

On a microscopic scale, the characteristic features of the
conned region are mainly governed by the radius of the
cylinders, R, their height, H, the distance between them, D, and
their spatial arrangement. In our studies, we chose H ¼ Lx and
placed these pillars on a triangular lattice in the ow–vorticity
plane. In what follows, we used a simulation box with volume
V ¼ (40 � 40 � 140)a3 and restricted the conned region to
Lconf < Lz; a schematic representation of our system is provided
in Fig. 6. Periodic boundary conditions were applied in the ow
as well as in the vorticity direction, and we used the minimum
possible periodic cell along the vorticity direction by xing the
pillar spacing to D¼ 2R¼ 0.5Ly. For such a system geometry, the
Reynolds number is then given by:

Re ¼ 2Rv

h=9s
; (22)

where n is the characteristic solvent velocity. In what follows,
we will simulate systems at moderate Reynolds numbers with
1 ( Re ( 35, since we anticipate a wide variety of possibly
nonlinear rheological phenomena in this regime.

From themacroscopic point of view, one of the most relevant
quantities to characterize the experiment is the permeability k,
which is a measure of the ability of a porous material to allow
uids to pass through it. However, it is a highly non-trivial task
to establish a relationship between the aforementioned micro-
scopic quantities and this macroscopic property, since
phenomena on very small length-scales, such as eddies and
backows, can have signicant ramications on the overall ow
behavior of the uid. One of the earliest attempts to establish a
relationship between the applied pressure gradient VP � g and
the average solvent ux q, i.e. the volume of solvent owing
through the unit area in unit time, was made by Darcy in 1856
(ref. 51): he postulated a linear dependence between the two
quantities:

VP ¼ �h

k
q: (23)

This one-dimensional empirical relationship has frequently
served as a starting point for numerous applications and still
represents a formidable challenge for theoreticians. More than
Fig. 6 Schematic representation of the simulation setup. Cylinders with radius R
and height Lx are placed in a hexagonal arrangement in the flow–vorticity plane.
The spacing between the cylinders is denoted as D. The confined region extends
over a length Lconf in the flow direction.

This journal is ª The Royal Society of Chemistry 2013
a century later in 1986, Whitaker developed a rigorous theo-
retical derivation of Darcy's law for small Reynolds numbers,
Re ( 1, by means of volume averaging.52

We will be extending our investigations also to higher Rey-
nolds numbers, for which eqn (23) is not a priori expected to
hold. In order to check the validity of eqn (23) for our system, we
recorded the time a tracer particle needs to propagate through
the conned region, and dened the ux of solute particles
through the connement, Q � q � Vz, as its inverse. We then
measured the ux Q of tracer particles with s ¼ 0.4D by
sampling the spatial velocity distribution along the gradient
direction in steps of Dx ¼ 0.05Lx for various g-values. The
interaction between the solute particle and the obstacles is
modeled akin to UW [see eqn (5)], and we xed the position of
the solute particle along the x-direction by employing the
potential given through eqn (16).

Fig. 7 shows Q as a function of x and g. It is well visible that,
similar to the case of an empty channel, the velocity of the tracer
particle increases with the distance to the walls and with the
magnitude of the pressure gradient. This behavior is however
not entirely monotonic in the vicinity of the walls: For g ¼ 0.03,
the ux Q decreases dramatically until it eventually vanishes at
g ¼ 0.035. Only for g $ 0.065, the tracer particles ow in an
unperturbed way.

In order to quantify this highly nonlinear ow behavior, it is
instructive to study hQi, which represents the ux of solute
particles averaged along the gradient direction over the entire
channel width. Fig. 8 shows this quantity as a function of g. The
broad dispersion of the local velocities for 0.03 # g # 0.06 is
clearly visible via the large error-bars in this range of g.

First, hQi increases linearly with g, conrming thereby the
validity of eqn (23) in the regime 1 ( Re ( 15, until it starts to
drop at g ¼ 0.03. From there on, the particle ux is not
proportional to the pressure gradient anymore, indicating the
absence of laminar ow. Under such ow conditions, Darcy's
law is no longer applicable. However, as the acceleration
constant eventually exceeds g ¼ 0.06, we leave this transient
regime and the system enters into a new regime, in which the
Fig. 7 Color-coded spatial flux Q of particles with s ¼ 0.4D through a confined
region with pillar spacing D ¼ 2R. Simulations were conducted for a series of
acceleration constants g and the solute flux was measured at different positions
along the gradient direction.
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Fig. 8 Average solute flux hQi of a particle propagating through our porous
environment as a function of g. Black symbols show results from our MPCD
simulations, while the dashed red lines show the corresponding linear fits to our
data. The dispersion of the local velocities is reflected in the size of the error-bars.
The positions of the vertical arrows are the same as in Fig. 9(a).
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dependence on g becomes linear but with a nite offset when
extrapolated to g / 0. We have tted our data in the unper-
turbed regions by straight lines, yielding the reduced perme-
abilities k1 ¼ 9.9 � 0.3 and k2 ¼ 4.6 � 0.1, respectively. The
discrepancy in the k-values points out that we are confronted
with two different ow regimes. One might be tempted to
interpret the drop of hQi at g ¼ 0.03 as the onset of turbulence,
but the linear relationship between hQi and g for g < 0.03 and for
g > 0.06 indicates that we have laminar ow in both g-regimes.
Such a behavior is denitely not the case for turbulent ow, in
which the pressure gradient would have been proportional to
the square of the ux.53

To be more specic, one has to distinguish with particular
caution between two scenarios: (i) the onset of a completely
turbulent ow and (ii) the place at which the ow becomes
unstable for the very rst time. Although in both cases the
Reynolds numbers are oen referred to as the “critical Reynolds
Fig. 9 (a) Average solvent flux hqi through the gradient–vorticity plane as a functio
and g ¼ 0.065. (b) Spatial distribution of the solvent flux along the gradient dire
immediately after the confined region.

2610 | Soft Matter, 2013, 9, 2603–2613
number”, the underlying physics of the two scenarios is
fundamentally different, since the instability of ow due to
small disturbances does not necessarily lead to the emergence
of turbulence. In general, a new but still laminar ow prole
evolves, which, as the Reynolds number increases further,
becomes more unstable and possibly develops into a new
laminar ow, but could also undergo a transition into a
turbulent ow.

To obtain a clearer picture of the ow behavior in the pres-
ence of the obstacles, we also measured the ux of the solvent
particles, q, in the absence of any solute particles. The ux was
measured immediately aer the conned region to capture the
effect of the obstacles. The average solvent ux, hqi, is shown as
a function of g in Fig. 9(a); we were able to identify three regimes
with distinctly different ow patterns. The inection points are
located at g ¼ 0.035 and g ¼ 0.065 respectively, and clearly
separate the domains. Furthermore, the location of these two
points perfectly coincides with the results obtained for the
average solute ux, hQi, presented in Fig. 8. To demonstrate
the dissimilar nature of the regimes, we plotted in Fig. 9(b) the
spatial distribution of the solvent ux along the gradient
direction for various values of g. For g # 0.03, the ux has a
parabolic shape akin to the case of an empty channel. As g is
increased above 0.03, the shape narrows considerably, resem-
bling a Gaussian. Finally, as we enter the domain g$ 0.065, the
prole widens again and becomes almost at in the central
region of the channel.

In order to better understand the transient regime at 0.03# g
# 0.06, let us consider the two-dimensional ow around a
circular obstacle with diameter 2R. Due to the no-slip boundary
conditions on the surface of the obstacle, a boundary layer is
created, where the velocity of the solvent changes from a value
of zero at the surface to the free ow value some distance away
from the cylinder surface. The inertia of the uid as it rounds
the top and bottom of the trailing surface causes the ow to
separate at these locations. This creates a perturbed wake
downstream from the cylinder. The extent of this perturbation,
the so-called recirculation length Lr, strongly depends on the
obstacle geometry, size and ow strength. In ref. 54
n of g. The vertical arrows indicate the inflection points of the curve at g ¼ 0.035
ction, q(x), for various values of g. In both cases, the solvent flux was measured

This journal is ª The Royal Society of Chemistry 2013
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Fig. 10 Pressure driven flow past a single cylindrical obstacle shown in the
gradient–flow plane (panel a) and in the vorticity–flow plane (panel b).
The hatched gray areas in the left panel represent the impenetrable walls along
the gradient direction, while the dashed black lines in the right panel indicates the
periodic boundary conditions in the vorticity direction.
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(experiments) and ref. 34 (simulations), Lr has been determined
for the Poiseuille ow past a single cylinder with blocking frac-
tions, dened as B ¼ 2R/Ly, up to B z 0.125. Coutanceau et al.
established that Lr is a linear function of Re, and that Lr/2R
increases with decreasing B (ref. 54). Moreover, Williamson
found that the critical Reynolds number, above which the ow
becomes unsteady and the Karman vortex street emerges, is
approximately Re ¼ 49 (ref. 55).

However, these ndings might not be completely applicable
to our system, since we have a slightly different setup: in our
simulations, the axis of the obstacles is parallel to the gradient
direction (see Fig. 6 and 10) and not to the vorticity direction (as
in ref. 34 and 54). Thus we do not have Poiseuille ow along the
curved surfaces of the cylindrical obstacles, but rather potential
ow, i.e. a ow prole with constant velocity. Furthermore, the
blocking fraction B ¼ 2R/(2D + 2R) ¼ 1/3 is considerably higher
in our simulations.

Therefore we have conducted simulations in which we have
evaluated Lr/2R for a single cylinder under potential ow
conditions. We also performed additional simulations for
Poiseuille ow to quantify the impact of the two different
velocity proles. The results are shown in Fig. 11, where we
Fig. 11 Relative recirculation length Lr/2R as a function of the Reynolds number
Re for blocking fractions B ¼ 1/8 and B ¼ 1/3. The main panel shows the results
under potential flow conditions, while the inset shows the results for Poiseuille
flow. Symbols represent simulation data, and the solid lines are linear fits. The
dashed black line shows the experimental results for Poiseuille flow past a cylinder
from ref. 54.

This journal is ª The Royal Society of Chemistry 2013
plotted the relative recirculation length Lr/2R as a function of
the Reynolds number Re for the blocking fraction B ¼ 1/8 and B
¼ 1/3. The errors are estimated to be of the order of 1/(4R), since
the position of the macroscopic velocities uj is arbitrarily taken
to be the center of the collision cell (see Section II).

First, it is well visible that Lr/2R is proportional to Re and that
this quantity increases considerably with decreasing B. Second,
we clearly can see that the differences between Poiseuille and
potential ow are only marginal for the blocking fractions
studied here. This is due to the fact that the curvature of the
parabolic prole is essentially at in the central region.
However, we anticipate that the discrepancies between the two
ow types will increase for larger B.

With these measurements at our disposal, we can explain the
emergence of the transient regime of vanishing ux at 0.03 #

g # 0.06 (see above). In Fig. 12 we show Lr/2R vs. Re, where we
indicate the g-values of the disappearance and the re-emergence
of stable ow (g ¼ 0.025 and g ¼ 0.065, respectively) discussed
above. From these data it is clearly visible that the origin of the
instability is strongly correlated with the recirculation length:
when Lr becomes, with increasing Re, comparable to half the
gap size, D/2, the solvent cannot recover from the perturbation
anymore, and thus the ow in the conned region is completely
suppressed. Upon further increasing Re, Lr eventually surpasses
D/2 and the distortion cannot build up anymore, leading to
stable laminar ow through the conned section of the
channel.

Hence for Re [ 1, the effects of inertia cannot be neglected
anymore, rendering the original form of Darcy's law [eqn (23)]
inapplicable. A common extension of this law is the so-called
Forchheimer equation,56,57 which adds an inertial term:

VP ¼ � h

k1
q� 9s

k2
q2; (24)

introducing the inertial permeability k2. However, tting our
data to this equation over the entire g-range also failed, due to
Fig. 12 Relative recirculation length Lr/2R as a function of the Reynolds number
Re for a blocking fraction B ¼ 1/3. The red symbols mark the disappearance (g ¼
0.025) and the re-emergence (g ¼ 0.065) of stable flow in the confined region of
the system. The horizontal dashed line indicates Lr ¼ D/2 ¼ R.
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Fig. 13 Particle flux hQi as a function of s for g ¼ 0.1. Red symbols represent
simulation data where we have kept the distance between the cylindrical
obstacles fixed at D ¼ 0.5Ly. Blue and green symbols show results, where we have
kept the ratio D/s fixed at 2.0 and 1.5.
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the transient regime in the interval 0.03 # g # 0.06 (see Fig. 8),
and we can conclude that we are dealing with a non-Darcy ow
behavior.

Finally, we studied the inuence of the tracer diameter and
the size of the obstacles on the solute ux Q. To this end, we
have conducted simulations, in which we have (i) varied s while
keeping the gap between the cylindrical obstacles xed at D ¼
2R ¼ 0.5Ly, and (ii) varied s while xing the ratio D/s at 2.0 and
1.5, respectively. The results of these computer experiments are
shown in Fig. 13, where we plotted the reduced particle ux hQi
relative to the velocity of a non-conned tracer particle of the
same size for different values of s.

(i) For a xed gap size, hQi decreases with increasing tracer
particle size, since the solvent velocity within the gaps is
spatially inhomogeneous and shows strong local deviations
from a at prole due to the no-slip boundary conditions at the
surface of the cylinders. This scenario is very reminiscent of the
propagation of a tracer particle placed in the center of an empty
channel (cf. Fig. 3).

(ii) The situation is considerably different if we x the ratio
between the gap size D and the particle diameter s, instead. In
such a scenario, large particles ow on the average faster
through the connement than small particles. This effect can be
understood by considering the radius R of the cylindrical
obstacles: in order to keep the ratio D/s xed, R has to shrink for
bigger solute particles, reducing thereby the surface area of the
obstacles and consequently the drag. Hence, the solvent ow is
less obstructed and the overall ux increases.
V Conclusions

We have shown that the MPCD technique is capable of repro-
ducing quantitatively experimental results as regards the ow
proles of sizable colloidal particles within narrow channels,
2612 | Soft Matter, 2013, 9, 2603–2613
even for the extreme cases in which the channel diameter
exceeds only slightly the colloidal diameters. Furthermore,
simulations have been used to study the effect of geometrically
arranged obstacles in a narrow channel, opening the way for
further studies of microuidics in the presence of porous
environments; interesting problems include the injection of
drilling uids in rock formations58 or ltration applications,59

where the colloidal particles approach the size of the capillary,
and classical models for ltration oen fail.

Our results can be experimentally veried by means of state-
of-the art optical techniques, in which the location and the local
velocity of very small tracer particles can be extracted by analysis
of the speckle pattern in light scattering experiments.60 Further
studies should address the inuence of the geometrical
arrangement of the obstacles as well as of the shape of the tracer
particles on the resulting ow and permeabilities of porous
media, as well as the study of ow of colloidal suspensions in
nite concentrations.
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