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By means of multiscale molecular simulation, we show that solvophilic–solvophobic AB diblock copoly-

mer brushes in the semi-dilute regime present a re-entrant disorder/order/disorder transition. The latter

is fully controllable through two parameters: the grafting density and the solvophobic to solvophilic ratio

of the tethered macromolecules. Upon increasing density, chains first aggregate into patches, then

further order into a crystalline phase and finally melt into a disordered phase. We demonstrate that the

order/disorder transition can be explained through the peculiar properties of the aggregates: upon

increasing density, the aggregation number grows as expected. On the contrary, their projection on the

plane shrinks, thus melting the emergent ordered phase. Such a density dependent shrinkage, seen for

the first time as the cause to an order/disorder phase transition, is as a consequence of the entropic/

enthalpic competition that characterises the hierarchical self-assembly of the brush.

1 Introduction

Polymer brushes are a class of polymeric systems made of macro-
molecules grafted on one end to a substrate or an interface.1 The
geometry of the grafting substrate and the nature of the grafted
macromolecules give rise to a plethora of possible self-organising
scenarios.2,3 Simple homopolymeric brushes (i.e., brushes made
by homopolymers tethered to a substrate) and their properties
have been extensively investigated both theoretically4–10 and
experimentally,11–14 corroborating the validity of scaling theories
that predicted the dependence of brush height on both grafting
density and solvent quality.2,3 A considerably more complex sce-
nario results by altering the local chemical composition of the
tethered macromolecules. For example, by grafting AB solvophilic/
solvophobic diblock copolymers onto substrates of various geo-
metries, it is possible to exploit the rich morphology presented
by such macromolecules in solution, to obtain complex coating
patterns13,15–19 arising from the competition between the entropic
steric repulsion among the solvophilic regions of the grafted
chains, and the effective enthalpic attraction in solvophobic
regions. AB solvophilic/solvophobic diblock copolymer brushes
are a particular class of grafted macromolecular assembly, known

to present a very complex self-aggregating scenario13,16–19 arising
from the competition between the entropic steric repulsion
among the grafted chains, and the effective enthalpic attraction
in solvophobic regions. Applications of diblock copolymer
brushes range from template surface for mesoporous materials,20

to patterned surfaces,16 and to tissue engineering.21 The versatility
of diblock copolymer brushes attracted for almost three decades
the attention of scientists from diverse sectors.15 Nevertheless, the
prediction of their assembly behaviour still presents a challenging
problem. Self-consistent field theory has offered a very powerful
tool for the prediction of the behaviour of such brushes for grafting
densities starting from the melt, down to the semi-dilute
regime.16,22–24 Here, fluctuations in density weaken the predictive
power of mean-field based approaches, rendering computational
methods as the main but not always exhaustive exploration tool
due to the large number of parameter involved.

In this paper, we focus on the self-assembly properties of
neutral AB diblock copolymer brushes, made of A-solvophilic
heads grafted on a entropically repulsive planar surface, and of
B-solvophobic ends exposed to the solvent, in the semi-dilute regime.
Furthermore we will assume that the number of A monomers
LA c 1 and the number of B monomers LB c 1. Starting from a
dilute system we establish, upon increasing grafting density, the
emergence of patches on the surface, the ordering of such patches
into a crystalline phase and in particular an unexpected re-entrant
order–disorder phase transition.

The equilibrium phase diagram of diblock copolymer brushes
generically depends on two parameters that balance the weight of
the entropy/enthalpy contributions. The first is the fraction a of
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solvophobic monomers per grafted chain, while the second is the
ratio s/s* between the surface grafting density s and the overlap
value s* = (pRg

2)�1 of the same, i.e., the density at which two
neighbouring grafted chains of length L and radius of gyration
Rg B Ln would on average overlap. The resulting (s/s*,a)-phase
diagram can be broadly divided in: an entropy-dominated region,
where the steric repulsions between the grafted chains dictate the
global behaviour of the system, and an enthalpy dominated one
where the solvophobic ends start to interact.16,24 The entropy
dominated phase of the (s/s*,a)-phase diagram, is a region in
which – on average – the terminal ends of the grafted diblocks do
not interact. The grafted polymeric chains fluctuate similarly to
homopolymeric chains and no significant aggregation is seen on
the grafted substrate. As the (s/s*,a) combination allows for a non
zero probability of binding of the terminal solvophobic ends, we
enter, upon increasing s/s* or a, the enthalpy-dominated region.
Here, the density of attractive monomers in solution is sufficiently
high, and the latter aggregate and form clusters (patches), that
then fluctuate on a ‘‘soft substrate’’ of solvophilic heads.

The rest of the paper is organised as follows: we first describe
the system, then introduce an in depth description of the coarse
graining strategy employed to represent the polymeric macro-
molecules, simulation methods and the main results on the
phase diagram. Conclusions are followed by an Appendix section
where all technical details and data for all of the analysed
systems are discussed in depth.

2 Methods

The transition from the entropy to the enthalpy dominated
phase is where the self-assembly process takes place, and it lies
in the semi-dilute regime. The exploration of such a density
region is challenging computationally, as all equilibrium pro-
perties are strongly affected by spatial inhomogeneity, local
density fluctuations, and finite size effects,25 thus requiring the
analysis of extremely large systems. To this end we make use of the
Soft-Effective-Segment (SES) coarse-graining methodology,26,27 an
approach that allows to explore large systems, made of thousands
of chains each consisting – in its full monomer representation – of
thousands of monomers. SES has been already proven to be able to
quantitatively characterise equilibrium properties of macromole-
cular assemblies of the most diversified geometrical and chemical
composition, with continuous possibility of backtracking the
coarse grained results onto a well defined underlying monomer
described system.27–30

The original, microscopic lattice model of each grafted polymer
is thus mapped onto a coarse-grained SES description,27,28,31,32

based on renormalized chains of weakly interacting mesoscopic
segments. Within such a representation, groups of monomers
are represented by means of first principles effective potentials,
retaining all information on temperature, solvent quality and
many body contributions.26,27,33 The gain of this coarse-grained
description is the considerable reduction of the number of
degrees of freedom, for 3L to 3n per polymer (where L is the number
of monomers per chain, while n is the number of beads – or

blobs – used to represent the chain in a coarse grained way), as
well as the soft nature of the effective interactions allowing large
scale simulations of systems involving many, high molecular
weight (L c 1) polymers in the semi-dilute regime. Each blob
represents a subpart of the polymeric chain containing a number
L/n of monomers, and radius of gyration rg B (L/n)n, where n is the
original Flory exponent of the chain that is being coarse-grained.
The number n of blobs used to represent each coarse-grained
polymeric chain, depends on the solution density N/V, where N
is the number of polymers, and V the volume occupied by
the solution. n is chosen so that the local blob concentration
rblob = nN/V is below the blob overlap density rblob

� ¼ 4=3prg3.
Therefore we will always use, for all of the analysed grafting
densities, a number of blobs so that rblob or�blob. It is important
to notice that this coarse-graining procedure holds valid till
the number of Kuhn segments (monomers) per blob is high
enough to retain polymer scaling properties: L/n B 30. Under
those conditions, the SES coarse-graining method has already
been proven to match quantitatively microscopically described
systems27,28,31,32,34 Capone et al. have extended the SES repre-
sentation from homopolymers to di-block polymers28 for single
chains and telechelic star polymers.35

2.1 The effective potentials

To represent the system in a coarse-grained way, polymer
chains of length L are divided into n segments – or blobs, each
one made of a number L/n of monomers. Blobs are interacting
with one each other through effective interactions; the inter-
actions between blobs are determined by a first principles
inversion procedure, that was derived for diblock
copolymers,27,28 generalising the method used earlier for the
simple dumbbell representation of the same.31,36,37 The three
intramolecular tethering potentials, consisting of a superposi-
tion of repulsive and attractive terms, are determined from
microscopic, full-monomer Monte Carlo simulations of an
isolated a–b di-block copolymer, a,b = A,B, where the A-block
is in good solvent and the B-block is just below the y solvent. The
distribution function sab(r) of the separations between the centers
of mass of the two blocks is estimated by averaging over a large
number of monomer-configurations, and the corresponding
tethering potential follows from:

jab(r) = �kBT ln[sab(r)]. (1)

In order to determine the intermolecular pair potentials, we
consider the six possible combinations of ab and gd dimers and
calculate the corresponding blob–blob pair correlation func-
tions hag(r), as functions of the distance r between the centres
of masses of the a-block of dimer 1 and the g-block of dimer 2.
This is achieved from Monte Carlo-generated histograms, by
averaging over allowed monomer configurations for fixed
values of r, according to the usual Metropolis algorithm. The
functions hag(r) are mapped out by varying the distance r, i.e.,
by gradually moving the CM’s towards each other. The effective
pair potentials are extracted by inverting the pair correlation
functions according to an exact cluster expansion, valid for an
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isolated pair of dimers, i.e., in the low density limit.27,28,31,36–38

The effective intermolecular potentials Vab(r) and the intra-
molecular tethering potentials jab(r) obtained by the inversion

procedure are shown in Fig. 1, as functions of the CM–CM
distance r, reduced by the common blob radius of gyration rg.
The molecular weights of the polymer segments comprising
each blob, used in the simulations, are sufficiently large
(mA, mB \ 100) to justify the statement that the data shown
in Fig. 1 indeed correspond to the scaling limit.

2.2 Simulation methods

The simulation consists in random translations of the single
segments that are accepted or rejected according to the Metropolis
rule.39 Since the system undergoes disorder–order transitions we
have included a box reshaping move where the aspect ratio of the
grafting ratio is slowly changed. The deformation is accepted or
rejected according to the Metropolis rule.

We here consider brushes made of diblock copolymer
chains of length L = 106 monomers, with a percentage a of
solvophobic monomers spanning the range from 40% up to
80%. We investigate a wide range of grafting ratios s/s* from 1
up to 26. It is important to stress that the range is within the
semi-dilute regime and we do not reach the melt where we
expect a lamellar phase with a solvophobic layer standing on a

Fig. 1 The non-bonded potentials VAA in black, VAB in red and VBB in blue
and the tethering potentials jAA in black, jAB in red and jBB in blue
between the centers of mass of the various blobs of type A and B. The
radius of gyration of the A and B blobs is the same and labelled as rg.

Fig. 2 Phase diagram for the gas–solid–liquid transition as a function of the asymmetry ratio a and the density ratio s/s* in panel (b). It is possible to see
the appearance of the solid phase as a re-entrant phase (in red – panel (d)) squeezed between the gas (green – panel (c)) and liquid (blue – panel (a))
phases. In the panels we follow the transition along the a = 0.6 line. In every panel we show the distribution P(ap) of the angle ap between pairs of first
neighbouring patches (see Section A.2), and the radial distribution g(r) of the solvophobic monomers, where r is the distance between the centres of
masses of the aggregates expressed in units of the persistence length b of the underlying microscopic representation.
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solvophilic one. In the semi-dilute regime, the SES coarse
graining procedure has been shown to be able to quantitatively
reproduce properties of the corresponding microscopic
system.27,28,31,32,34 All results presented in this work are in
scaling, and they thus only are functions of a and s/s*. Diblock
copolymer brushes made of polymers of a different length
(in scaling), would therefore reproduce the same behaviour
here presented, provided that a and s/s* are kept constant. All
distances are reported in units of the bond length b of the
underlying full monomer representation, while free energies
(effective interactions between beads) are in units of kBT;
temperatures are expressed in reduced units, where room
temperature corresponds to T = 1. To speedup equilibration
and sampling, we employ the Virtual Move Parallel Tempering
(VMPT)40 method, which in our previous studies on homo-
polymer brushes, has proven to be extremely effective in
sampling the brush profiles.9,10 A typical VMPT simulation is
performed at different reduced temperatures (4.0, 3.5, 3.0, 2.7,
2.5, 2.2, 2.0, 1.5, 1.2, 1.1, 1.0, 0.8, 0.5, 0.3, 0.2, 0.1), we run the
simulation in parallel at higher additional temperatures to help
overcome barriers in the phase space. However, we are only
interested in the behaviour of the system at the reduced
temperature T = 1 where the SES potential are valid. We have
considered both the scenarios where the anchoring point is
fixed or mobile on the grafted surface, without observing a
significant difference in the behaviour of the copolymer brush, as
previously reported for the case of homopolymeric brushes.9,10

The reason is that the chains are long and well above the scaling
limit which is imposed by SES representation.

3 Results

By collecting all our simulations, we can sketch a phase diagram
for the system as a function of the (s/s*,a) combination, as
drawn in Fig. 2.

The green area in panel (b) of Fig. 2 shows the (a,s/s*) region
where there is no significant inter-molecular interaction
between the solvophobic tails of the different macromolecules
(gas-phase). The brush remains in an ‘‘open’’ configuration.
Such a phase is characterised by a carpet of isolated collapsed
tails monomers, each anchored to the surface via its solvophilic
head (see Fig. 3a). The s/s* boundary of the gas phase shrinks
with increasing a indicating that aggregates forms only when
the density of attractive monomers is over a minimum value.

When the local monomeric density of the solvophobic
terminal ends reaches a threshold, tails belonging to different
chains aggregate into functionalised regions, or patches. As the
latter are formed, they are expelled from the solvophilic region
of the brush and exposed to the solvent. Each aggregate takes
the shape of a ‘‘pinned micelle’’16,24 where the core region is
formed by the clustered attractive tails, and a corona tethered
to the surface is formed by the corresponding self-avoiding
heads (see Fig. 3c). The patches fluctuate, on average, around
an equilibrium planar configuration parallel to the grafted
substrate.

The region aA [0.5,0.7] shows for s/s* A [7.0,13.0] (red squares
in Fig. 2b) the emergence of an ordered 2D crystalline phase, or
solid-phase (see Fig. 3b). This phase is suppressed when the
grafting density is further increased: patches lose their 2D order
and fluctuate in both parallel and orthogonal directions on a
plane parallel to the grafting surface, and a liquid-phase arises
from the crystalline region (see Fig. 3d). It is important to stress
that for a = 0.4 the system goes directly form the gas- to the liquid-
phase, while for a = 0.8 we only observe the liquid-phase.

For clarity reasons, we here focus on the description of the
re-entrant transition for the a = 0.6 system; however the
phenomenology is valid for all the all of the asymmetry ratios
we analysed a A [0.4,0.8] and all grafting densities, as we report
in detail in Section A. The self-assembly behaviour involves the
collapse of multiple chains into the pinned micelle configu-
ration. We hence employed a cluster analysis algorithm (see
description in Section A.2) to characterise size, height distribu-
tion f(z) of the patches with respect to the grafting surface, and
the relative arrangement of the aggregates through their pair
distribution function g(r) and the distribution P(ap) of the ap

angles between neighbouring patches (see definitions in Section
A.2, and graphical representation in Fig. 9).

The cluster analysis in the gas-phase indicates the coexistence
of small intermolecular and many intramolecular clusters (see
the black histogram in Fig. 4). In this case, the g(r) between
patches does not present any sign of structure and the angular
distribution P(ap) between neighbouring patches is featureless
(see green inset in Fig. 2 and in the g(r)s reported in Fig. 10 and
13, pertaining to the ‘‘gas’’ phase).

In the solid-phase, all grafted chains participate to the
formation of patches of finite size, that align along preferential
directions with respect to the grafting plane. A strong signature

Fig. 3 Snapshots of the typical diblock copolymer brush conformations
for the three different phases (a) gas, (b) solid (d) liquid. (c) Left: Sketch of
the gas phase: the end of the chains are not cross-interacting and cover
uniformly the surface of the brush. (c) Right: Sketch of the pinned micelles
in the aggregated phases (solid and liquid). (d) snapshot of the re-entrant
liquid. Upon increasing the ratio s/s* the aggregates melt the 2D-crystalline
pattern shown in (b). In all snapshots, red are the solvophobic monomers,
cyan are the solvophilic ones.
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of structure is seen in both the radial distribution function
between aggregates, and the average angle distribution between
neighbouring patches, that sharply distributes around 601 as
shown in the red inset of Fig. 2 (and in Fig. 14). The size of the
unit cell of the assembled crystals is controlled by the radius
Rcorona. The latter is defined as the average radius of the 2D
projection on the grafted surface of the pinned micelles’
coronas (see Section A.1 for definition and graphical clarifica-
tion). By normalising the radial distances by Rcorona, the first
peak of the crystalline g(r) re-scales to unity, as shown in the
inset of Fig. 11. Furthermore, the disorder–order transition
between the gas and solid-phases distributes the patches at a
fixed height from the underlying surface, as shown in Fig. 5. As
the grafting density is further increased, the patches start
oscillating both in the z-direction, as well as in the xy-plane.
Order gets lost and we see the appearance of the liquid-phase.

In the blue inset of Fig. 2 (and in Fig. 12) we show the 2D
radial distribution function computed on the projection on the
xy plane of the coordinates of the centre of mass of the patches,
for the high overlapping densities s/s* 4 13. The g(r) shows
short-range oscillations typical of a fluid phase, where transla-
tional order decays rapidly with the intraparticle distance. The
angular distribution P(ap) in the blue inset of Fig. 2 (and in
Fig. 15) also shows a strong loss of order: the sharp peak
around 601 appears smoothed with respect to the solid one,
resembling more and more to the gas-phase one in Fig. 13. We
will thus interpret all of the phases characterised by such a
combination of g(r) and P(ap), as liquid-phases.

In Fig. 4 we show the cluster size distribution for the three
phases. The gas-phase presents the coexistence of single chain
intramolecular clusters with small intermolecular clusters.
Aggregates formed in the solid phase are quite monodisperse,
with a cluster size distribution that is sharply peaked. As soon

as density is increased, and the crystal melts in favour of a
liquid-phase. The average cluster size grows, and the width of
the cluster distribution spreads. On the other hand, Rcorona

decreases e.g., by B40% for the a = 0.6 case, passing from
762[b] (bond lengths) in the crystal phase (s/s* = 7.1) to 483[b]
deep in the liquid phase (s/s* = 25.8). The reduction in the
coronae of the pinned micelles can also be appreciated by
comparing the solid and liquid g(r) (see Fig. 11 and 12). The
position of the first peak – in microscopic units – is centred
around 1000[b] for the solid case, while the liquid phase shows
an average distance between nearest neighbours of about 500–
600[b].

To understand such an apparently counter-intuitive behaviour,
we analyse the scaling of the average brush height as a function of
density. Reminiscent of the scaling of a homopolymer brush, we
observe that, as grafting density is increased, the brush as a whole
is stretched, and patches are clearly expelled outwards. Reaching
the liquid phase, the aggregates float on a carpet of fully stretched
solvophilic chains, see Fig. 16. To formalise the correlation
between the stretching of the brush and the shrinkage of the
corona radius, we performed a scaling analysis where Rcorona is
obtained by minimizing the total free energy of the pinned
micelles for every density (for the detailed derivation of the scaling
theory, see Section A.1). Taking into account the free energy
contributions of both the packing of the monomers in the patch,
and the stretching of the chains belonging to the coronae,
scaling theories (see Section A.1) confirm that Rcorona decreases
with as s/s* grows, as shown in Fig. 6. Hence, the re-entrant
behaviour is the result of two concurring effects: the reduction of
the Rcorona, and the loss of the 2D confinement manifesting in
the double peaks of the height of the tail monomers plotted in

Fig. 4 log–log plot of the number of clusters as function of their size for
the gas, solid, and liquid phases for the a = 0.6 system. The corona radius
of gyration Rcorona of the clusters in three phases are respectively: 1207, 762
and 483 in units of bond length. To stress the dependence of the phase on
the cluster size, we show two different values of s/s* (s/s* = 7.1, 8.0),
characterised by a very similar average number of clusters, and both
belonging to the solid phase.

Fig. 5 Height distribution of the solvophobic ends of the brushes with
asymmetry ratio a A [0.4,0.8] and s/s* A [3.2,25.8]. Same colour indicates
same grafting density (red s = 3.2s*, orange for s = 7.2s*, green for s = 13.7s*,
blue for s = 23s* and maroon for s = 25.8s*) and same line style indicates
same a. The coarse grained approximation used for all the presented analysis is
valid for all grafting densities, as the coarse grained system has been
represented with a high enough number of blobs to grant that blobs are
below their overlap concentration.
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Fig. 5. The latter is reminiscent of the phase observed in core-
softened colloids by Osterman et al.41 The arising of the double
peak is strongly related to a specific range in grafting densities in
the liquid: in such a phase the blobs do not have a planar
ordering, and the average height from the grafting substrate
fluctuates. On the contrary, in the ‘‘solid’’ phase, the fluctuations
along the z axis of the average position of the patches are
suppressed.

The free energy analysis is not able to capture the transition
between the different phases, as the scaling theory is performed
on the single aggregate. It can be therefore only be used to
predict how diblock copolymers would arrange within one
aggregate (see Section A.1), but it has no predictive power over
how different aggregates would distribute with respect to one
each other. Nevertheless, the scaling analysis qualitatively
reproduces the trend, modulus a constant prefactor that were
neglect in the scaling calculation. The qualitative match
between the trend of the simulated and calculated Rcorona is
further proof that the SES is capable of reproducing the correct
scaling laws of the underlying microscopic system even below
the y temperature.

4 Conclusions

In this work we analysed the properties of solvophilic/solvophobic
diblock copolymer brushes in the semi-dilute regime. The compu-
tational investigation was made through a coarse grained
approach known as the soft-effective-segment methodology,28,31

that allows to regroup thousands of monomers into an effective
potential, while retaining quantitative predictions on equilibrium
properties of the system. We analysed the self-assembling properties

of substrates grafted by thousands of polymers each made of
millions of monomers.

We mapped the configurational space of the brush into the
phase space of the s/s*, a parameters that fully control the self-
assembling properties of brush. We identified the presence of a
re-entrant disorder/order/disorder transition in the s/s*,
a phase space. The ordered phase corresponds to a 2D crystalline
array of patches formed by the assembled solvophobic tails of
the polymers. We show how to control the crystalline order by
changing the s/s*, a parameters. Hence, producing a tunable
crystalline surface with many applications for patterning and
templating the growth of materials from the surface. The second
key observation that we performed concerns the mechanism for
the re-entrant transition. We have demonstrated, both compu-
tationally and theoretically, that the increase in the grafting
density stretches the pinned micelles outwards reducing their
2D effective radius. To the best of our knowledge such a
mechanism has never been observed as a function of grafting
density before and represents a novel physical approach to
control the ordering of a 2D system. In particular the ordered
phase has not been experimentally observed yet. The results
presented in Fig. 2 offers a precise map to guide potential new
experiments. In the pioneering works by Wang and Müller,42

by using a single-chain-in-mean-field (SCMF) simulations approach,
the authors observed a related re-entrant transition by varying
the asymmetry ratio a (1 � f in their paper). However the
underlying mechanism causing the re-entrant transition differs
from what presented here, as lateral size of the clusters (patch
size) that the authors of ref. 42 find in the re-entrant liquid phase
does not decrease when the solid phase melts, but clusters fuse
upon forming an almost bi-continuous phase that might be the
precursor of the lamellar phase. We did not reach such high
grafting densities with our analysis but focused on the semi-
dilute regime.
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A Appendices
A.1 Scaling theory for the radius of core and corona in pinned
micelles

We assume that the surrounding solution is good for the
A block, i.e. yA = (T � YA)/T 4 0 and poor for the B block, i.e.
yB = (YB � T)/T 4 0.

As temperature in the whole work will remain unchanged, yA

and yB are constants that will be neglected in the following part
of this derivation. We will deal in this section with scaling
theories developed for chains tethered by the soluble A block.

Employing the scaling theories developed in ref. 16, 24 and
43, we write the total free energy FTOT of a pinned micelle as the
free energy FB of the collapsed region (patch), plus the surface
free energy FS between the patch and the corona plus the term FA

as the free energy of a spherical brush.16,24 Within the B-block

Fig. 6 The quantity Rcorona obtained by solving (9) for the a = 0.6, L = 107

is plotted as a function of s. The error bar of the points is smaller than point
size. The horizontal axis is in units of s*, while the vertical axis is in units of
the persistence length aB = aA = b of the underlying full monomer
representation. The corona radius appears to clearly decrease upon
increasing s. The profile goes through the simulations points (red points)
without fitting, however the polymer length L is larger than the one
considered in the simulation (L = 106) because we did not include scaling
prefactors in the derivation of Rcorona. We also show the curve corres-
ponding to the L = 106 case (blue) and L = 106 multiplied by a factor 4.75
(green). The latter is practically indistinguishable from the L = 107 case.
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the free energy of the monomer–monomer interaction is inde-
pendent of the total number of chains in the micelle and
coincides with the free energy in the collapsed core of a single
chain (isolated diblock in solution). We can therefore omit it
from further consideration because it does not contribute to the
free energy difference between chains and spherical micelles.

FTOT = FB + FS + FA. (2)

We will analyse separately the three distinct contributions to
the total free energy.

The stretching free energy of the B blocks in the core of the
micelle can be written as:

FB �
R2

Rg
2
� R2

aB2LB
2nB
; (3)

where R is the radius of the patch (of the core of the pinned
micelle).

The surface free energy FS is the free energy associated with the
surface between the core and the corona and it is proportional to
the ratio between the surface area per chain s defined as

s � aB
3LB

R
¼ aB

3aL
R

; (4)

and the area occupied by each monomer:

FS �
s

aB2
¼ aB

3aL
aB2R

¼ aBaL
R

; (5)

where LB = aL.
For long tethered A-parts (height of the brush much larger

than the radius R the patch) the system can be viewed as a planar
brush covered by spherical micelles, as sketched in Fig. 7.

For this reason, the free energy term FA that accounts for the
contribution of the tails, can be split into two terms: FA = Fbrush

A +
F micelle

A , where

Fbrush
A B LA(saA

2)1/2nA = (1 � a)L(saA
2)1/2nA (6)

and F micelle
A is the free energy of the spherical micelle (see

eqn (AI.22)43)

Fmicelle
A ¼ nAR

HA
Fbrush
A ln 1þ HA

nAR

� �
(7)

where LA = (1 � a)L and HA = (1 � a)L(saA
2)(1�nA)/2nA. By writing

explicitly the total free energy, we obtain:

FTOT ¼
R2

aB2ðaLÞ2nB
þ aBaL

R
þ Fbrush

A

þ nAR
HA

Fbrush
A ln 1þ HA

nAR

� �
; (8)

Fig. 7 Pinned micelles are considered as the superposition of a homo-
polymeric brush plus the fraction of a diblock copolymeric micelle. The
red terminal blocks indicate the micellar core assembled by the terminal B
blocks, the cyan blobs are the contribution arising from the micellar
corona. The white blobs are the homopolymeric brush.

Fig. 8 Sketch of the relation between the corona radius Rcorona, the patch
radius rb and the radius rB of the basis of the cone.

Fig. 9 Schematic representation of ap, defined as the angle between a
cluster and its first neighbour.
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By minimising the free energy with respect to the radius of the
patch R, and remembering that qFbrush

A /qR = 0, we obtain the
estimate for the equilibrium patch radius:

@FTOT

@R
¼ 2R

aB2ðaLÞ2nB
� aBaL

R2
þ nAFbrush

A

� 1

HA
ln 1þ HA

nAR

� �
� 1

ðnARþHAÞ

� �
¼ 0;

(9)

which we solve for R numerically.
Each pinned micelle is made of f chains tethered on a plane, and

the geometry of the aggregate can be approximated as a truncated
cone, with radius of the smallest base rb = R and the radius of the
largest base rB = ( f/s)1/2 where s is the grafting density. By assuming
that the radius of the patch is made by the close packing of a chain
made by f segments of length aL each, we can estimate that

R B ( faL)1/3, (10)

Fig. 10 The radial distribution function between all of the attractive
monomers belonging to the grafted diblock copolymers. For the different
asymmetries [a A 0.4,0.7] considered we observed the gas phase at the
plotted grafting densities. The x-axis is in units of the bond length.

Fig. 11 Pair correlation function between formed patches for different
asymmetries [a A 0.5,0.7] in the region of the configurational space where
the solid phase is dominant. In the inset the distances r have been
re-scaled by the radius of the corona of the pinned micelles. This re-scaling
highlights that patches on average distribute at distances r = Rcorona.

Fig. 12 Pair correlation function between formed patches for different
asymmetries [a A 0.5,0.8]. In the inset the distances r have been re-scaled
by the radius of the corona of the pinned micelles. This re-scaling high-
lights that patches on average distribute at distances slightly below r =
Rcorona We here see the typical structure of a liquid.

Fig. 13 Average angle distribution for four different asymmetries (a = 0.4,
0.5, 0.6 and 0.7) as a function of the grafting density in the gas phase.

Fig. 14 Average angle distribution for four different asymmetries (a = 0.4,
0.5, 0.6 and 0.7) as a function of the grafting density solid phase.
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hence

f ¼ R3

aL
: (11)

and

rB ¼
R3

aLs

� �1=2

: (12)

In order to compare the scaling predictions to the results
obtained computationally for Rcorona, we have to compute the
radius of the truncated cone that geometrically defines the
pinned micelle (rb as the smallest base and rB as the
largest one).

Through simple geometrical considerations, we obtain that
the radius of a truncated cone of height h at a distance z from
the grafting plane is (see Fig. 8):

rðzÞ ¼ rB þ ðrb � rBÞ
z

h
; (13)

while the height of the centre of mass of the cone is.

zcm ¼
h

4

rB
2 þ 2rBrb þ 3rb

2

rB2 þ rBrb þ rb2
; (14)

We define Rcorona as the radius of the truncated cone
computed in the centre of mass of the cone: Rcorona = r(zcm).
We can now use the results obtained for R by solving (9), to
obtain a qualitative scaling of the radius of the corona Rcorona;
we observe that the scaling prediction implies that a shrinkage
of Rcorona with increasing grafting density, as we observe in our
numerical simulations (see Fig. 6).

Fig. 15 Average angle distribution for four different asymmetries (a = 0.4,
0.5, 0.6 and 0.7) as a function of the grafting density liquid phase.

Fig. 16 Height distribution for the brushes with asymmetry ratio a A [0.4,0.8] and s/s* A [3.2,25.8]. Same colour indicates same grafting density: (a) red
for s = 3.2s*; (b) green for s = 13.7s*; (c) blue for s = 23s*; and (d) maroon for s = 25.8s*. Symbols indicate a-values: circles for a = 0.4, squares for a = 0.5,
diamonds for a = 0.6, triangles up for a = 0.7 and triangles left for a = 0.8.
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A.2 Cluster analysis

We have carried out a systematic cluster analysis based on the
aggregation properties of the solvophobic B-tails, which form
the cores of the clusters. Two diblock copolymers are considered
to belong to the same cluster if the distance r between the CM’s
of their B-blocks is less than a chosen cut-off distance rc;
particles are classified as neighbours if their distance is below
rc and clusters are then built by grouping particles that share at
least one neighbour. rc is a free parameter, that is chosen in a
range of values. The determination of the number of patches
assembled on the surface is performed as follows. First of all, a
patch requires the presence within a cluster (defined in what
follows) of at least two different polymers. Second, by making
use of our cluster counting algorithm, we analysed the stored
configurations obtained during the simulations at various den-
sities, and we identified the groups of solvophobic blobs lying
with respect to one another closer than a certain cut-off. The
cutoff was empirically identified within a range of values Drc A
[100,200]b that discriminates a number n a 1 of clusters made
of more than one chain. Larger values of rc would inevitably
merge all clusters into a single one. In Fig. 13–15, we analyse the
orientational distribution between the patches by means of the
relative angle ap formed between the nearest neighbours (Fig. 16).
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