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Hydrodynamic inflation of ring polymers
under shear
Maximilian Liebetreu 1* & Christos N. Likos 1*

Hydrodynamic interactions can dramatically influence the dynamics of fully flexible, ring-

shaped polymers in ways unknown for any other polymer architecture or topology. Tumbling

under shear is a common dynamic pattern of motion for all polymer architectures. Here we

show the existence of a shear-induced inflation phase exclusive to ring polymers, the onset of

which depends on the ring’s contour length. This is accompanied by a strong suppression of

tumbling, which resumes at even higher shear rates. The ring swells in the vorticity direction,

and the horseshoe regions on the stretched and swollen ring are effectively locked in place

relative to its center-of-mass. Furthermore, knots tied onto such rings can serve as additional

‘stabilisation anchors'. Under strong shear, the knotted section remains well-localised

while tank-treading from one horseshoe region to the other in sudden bursts. We find

knotted polymers of high contour length behave very similarly to unknotted rings of the same

contour length.
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The influence of topology on the physical properties of
macromolecules is profound and manyfold1. The most
striking manifestation of this fact is the vast richness of

novel phenomena emerging in the behaviour of ring polymers,
both at the single-molecule level as well as for concentrated
solutions and melts2–6. Of immediate interest is, for example, the
interplay between molecular architecture, deformation and
dynamics under shear, but also how these affect stress distribu-
tion, viscosity, rheology and thixotropic behaviour of sheared
concentrated solutions. The conformations of single molecules
and the ensuing effective interactions7–9, the self-organisation of
concentrated ring polymer solutions and melts10–14, the viscosity
and stress relaxation under shear5,15–17 as well as the possibility
of emergence of novel, topologically glassy states for ring polymer
melts18,19 are a few characteristic examples of the variety of
properties unique to cyclic polymers. Concomitantly, the out-of-
equilibrium behaviour of rings under tailored microfluidic flows
has also attracted considerable attention in the recent past20–23.

As the probability to obtain unknotted polymers decreases
exponentially with their contour length24, the importance of
knots on polymer behaviour is an additional topic of intensive
research activity. Knots are naturally found on long DNA
strands25–27 and proteins28–30, while at the same time they can
also be artificially31,32 or synthetically manufactured33. The
influence of such knots in equilibrium and relaxation properties
in the bulk34,35, under confinement36,37 and under tension38–42

has been thoroughly investigated. Recently, the sedimentation
behaviour of flexible, non-Brownian knots has been added to the
host of counterintuitive phenomena43.

All polymer architectures (linear, star, dendritic, cross-linked
and ring) are known to undergo tumbling under steady shear at
sufficiently high shear rates22,44–47. Moreover, it is known that
linear chains never fully stretch under shear and they reach a
stretched configuration only under so-called planar mixed flows
that represent a combination of simple shear and planar
extension23,48,49. Under simple shear, ring polymers show two
dynamical modes: tumbling (TB) and tank treading (TT)50.
During TB, the polymer’s shape changes rapidly as the ring
collapses and expands again, with beads at the horseshoe regions
swapping to the opposite side. The transition between the initial
and final state can best be described by the flipping of a disc,
except it collapses onto itself during the flipping procedure. TT,
on the other hand, is vastly different and becomes pronounced for
stiff rings: the polymer ring maintains its shape, but beads start
moving along its shape around the vorticity axis. This can best be
visualised by a coin rolling on its edge, or the wheels of a tank.

In previous work, we have highlighted the importance of fully
developed hydrodynamics when investigating ring polymers
under shear22. Through a coupling between hydrodynamic
interactions (HI) and topology unique to the ring architecture,
circular polymers under shear have been shown to swell in the
vorticity direction, a phenomenon that is absent for linear chains
and it also disappears for circular polymers when HI is switched
off22,51,52.

Here, we present the emergence of an inflationary phase for
longer ring polymers under simple, pure shear and fully devel-
oped hydrodynamics caused by a backflow from the horseshoe
regions. In this phase, the ring undergoes full unfolding in all
directions and transforms itself to an almost rigid, stretched, non-
Brownian particle, in which not only TT but also TB motions are
suppressed. The inflated regime is unique to ring polymers, but
independent of the presence of knots along their backbone, but it
requires a minimum polymer size to manifest itself. The aim of
this work is to bring forward a novel-type behaviour of rings with
and without knots, and to quantify and explain the interplay
between HI and topology. We suggest that the swelling of the

polymer in vorticity direction might potentially pave the way to
distinguishing rings and chains of different sizes, and that shear
could be used to reliably tighten knots on rings to unify the
behaviour of polymer melts. The vorticity swelling of all rings and
its massive impact on dynamics and shape underlines the
importance of fully developed HI when studying such polymers
in solution, a property we demonstrate additionally by perform-
ing simulations without HI and showing that the inflated phase
disappears in that case.

We have employed Molecular Dynamics (MD) simulation
coupled to a Multi-Particle Collision Dynamics (MPCD) sol-
vent53, together with Lees–Edwards boundary conditions54, to
simulate a variety of single-ring polymers of various sizes and
topologies under shear. In what follows, N stands for the number
of beads in the polymer; the topologies simulated were the
unknot, 01, as well as the prime knots 31, 41, 51, 52, 61, 62, 63, 71
and 81, employing the Alexander–Briggs notation55 to char-
acterise the knots.

Results
Self-stabilisation of long rings under shear and strong sup-
pression of tumbling. Contrary to open-ended topologies like
chains and stars, hydrodynamic interactions on rings cause the
polymer to swell not only in flow but also in the vorticity
direction22. To quantify the polymer’s conformation under shear,
we consider the gyration tensor56

Gαβ ¼
1
N

XN
i¼1

hsi;αsi;βi; ð1Þ

where si,α is the α-coordinate of particle i’s position relative to the
polymer’s centre-of-mass �r, such that si ¼ ri � �r and the symbol
〈⋯〉 denotes the expectation value arising from performing an
averaging over time. The diagonal elements of this tensor express
the polymer’s extension in these directions and are shown in
Fig. 1, plotted against increasing shear rate _γ. With the help of the
results in Supplementary Table 1, it can be established that we
have reached, for all polymers considered, Weissenberg numbers
of order 103, well into the strongly nonlinear regime, Wi ≫ 1.

In flow direction (Fig. 1a, d), Gxx increases steadily up to a
certain shear rate of _γ � 0:1 and then it starts decreasing. Along
the vorticity direction (Fig. 1b, e), Gzz experiences a short
decrease and then increases rapidly up to a maximum before
decreasing again. This effect is caused by backflow from the
horseshoe regions of a stretched ring under shear and is exclusive
to the ring topology22. Already this non-monotonic behaviour of
the vorticity direction diagonal component of the gyration tensor
is quite unusual and unique to ring polymers. For linear chains,
the back-flowing solvent from the ends that escapes in the
vorticity direction does not encounter any monomers there and
thus it does not couple to the polymer. Thus, for linear chains,
with or without HI, no vorticity swelling takes place, as
demonstrated in ref. 22 and shown again here exemplarily for
N= 75 chains in Fig. 1g–i. We provide Supplementary Movies 1–
2 of linear chains that show their typical conformations
under shear.

Even more spectacular features show up in the gradient
direction diagonal element Gyy, shown in Fig. 1c, f. Contrary to all
other known polymer types, which display a monotonic decrease
of Gyy with the shear rate _γ, a swelling anomaly shows up for
rings, resulting, for sufficiently long rings, in a non-monotonic
behaviour of Gyy and featuring a local minimum, a rise to a local
maximum and a further decrease of this quantity thereafter. The
effect is almost invisible for a contour length of N= 100, i.e., one
needs sufficiently long rings to clearly identify it.
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During the anomaly in the behaviour of Gyy, the N= 150 and
N= 200 rings undergo a shift in their typical dynamical patterns,
transitioning from the usual motion that features strong thermal
fluctuations on the monomer scale, as well as tumbling of the
whole macromolecule, towards a new phase in which the ring is
stretched and unfolded, and the tumbling motion stops almost
completely. At the end of this phase, which takes place for shear

rates bracketed by the local minimum and the local maximum of
Gyy, the ring behaves as a non-Brownian particle for which
thermal fluctuations are strongly suppressed by the strong
hydrodynamic and elastic forces between connected monomers.
More precise estimates of the crossover values of the shear rate to
this phase will be determined using the orientational resistance,
see Fig. 2c. Since this phase manifests itself as an unfolding of the

Fig. 1 Diagonal components of the gyration tensor. a–f Diagonal gyration tensor elements Gααð _γÞ for a set of rings, normalised over their equilibrium value
R2gð0Þ=3 where Rg is the radius of gyration, against the shear rate _γ in panels a–c and against Weissenberg number Wi in panels d–f. A more complete
discussion of gyration tensor G and the values obtained from it can be found in the Supplementary Methods. g–i Diagonal gyration tensor elements Gααð _γÞ
for a set of chains including HI and the N = 200-ring without HI for reference, normalised over their equilibrium value R2gð0Þ=3 where Rg is the radius of
gyration, against Weissenberg number Wi. a Gxx (flow direction) increases with shear rate to some maximum and then drops as rings align into the
flow–vorticity plane and experience less strain. b Gzz (vorticity direction) decreases to a minimum and then shoots up at values of _γ that anticipate the
inflation anomaly observed in panel c for the gradient direction. c Gyy (gradient direction) initially decreases with shear rate. For N= 150 and N= 200, an
inflation anomaly is observed, which is hardly visible for N= 100. The same anomaly is reproduced for MPCD collision time step h= 0.05 for the N= 150-
ring. To highlight this behaviour, shifts δ have been applied along the vertical axis, where δN=100 = 0.0, δN=150= 0.25 (h= 0.1), δN=150= 0.5 (h= 0.05)
and δN=200= 0.75. g Gxx (flow direction) increases with shear rate and eventually saturates for chains. Saturation was not yet reached for the N= 200-ring
without HI. h Gzz (vorticity direction) decreases continuously. The anomaly of rings with HI presented in panels b and e is absent here. i Gyy (gradient
direction) decreases with shear rate. As the anomaly in panels c and f is not shown by chains nor rings without HI, no shift was applied to these data.
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polymer and a uniform expansion in all directions whilst the ring
orientation in space remains fixed (see below) we term it
‘inflation phase’, induced by shear and hydrodynamics. After the
development of the inflation phase, the ring becomes fully
inflated or stretched. The emergence of this phase requires both
the ring topology and the presence of HI. Indeed, as shown in
Fig. 1g–i, linear chains with or without HI and cyclic polymers
without HI all show normal, monotonic behaviour of the
diagonal elements Gαα on Wi. We provide Supplementary
Movies 3–4 from a N= 200-ring under shear without HI to be
compared with our additional Supplementary Movies 5–14 of
rings under shear with HI taken into consideration.

Very recently, Young et al.23 applied Brownian Dynamics
simulations of chains and rings in mixed planar flows that
combine shear with extension, expressed by a relationship of the
form vsðrÞ ¼ ~Γ � r between solvent velocity and position vector in
Cartesian coordinates and the velocity gradient tensor ~Γ having
the form

~Γ ¼ _γ

0 1 0

α 0 0

0 0 0

2
64

3
75: ð2Þ

In ref. 23, the effects of hydrodynamics were accounted for via the
Rotne–Prager–Yamakawa (RPY) mobility tensor. The inflation
phase and the stretched configurations are absent in their findings
for pure shear, corresponding to the value α= 0 of the velocity
gradient tensor ~Γ above23,48,49; interestingly, inflated-like phases
are reported in ref. 23 for values α ≠ 0. The absence of this phase
in the aforementioned work could be a consequence of
approximating hydrodynamics via the RPY tensor, but it is most
likely an effect of the low degree of polymerisation, N= 120,
employed by Young et al. Further differences with ref. 23 pertain
to the solvent quality (θ solvent in ref. 23 vs. good-quality solvent
here) and to the modelling of the bonding interactions between
the monomers (harmonic vs. FENE springs, respectively).

The shape parameters44,56, defined mathematically in the Sup-
plementary Methods, are also featuring anomalous behaviour.
Two of them, the anisotropy δ* and the acylindricity c are shown
as representatives in Fig. 2a, b. Indeed, the non-monotonic
behaviour of the elements of the gyration tensor is directly
reflected in similar non-monotonic trends for the aforementioned
quantities. Very informative is the behaviour of the orientational
resistance mG ¼ Wi tanð2θÞ and of the alignment angle θ of the
polymer with the flow axis, shown in Fig. 2c, d, offering a direct
quantitative measure of the onset and the characteristics of the
inflation phase. It can be seen that mG shows a crossover from the
usual, mG � _γ0:6 behaviour to a much sharper, mG � _γ power
law, which allows us to define a characteristic crossover shear rate
_γ ´ marked by the vertical lines in Fig. 2c, and summarised in
Table 1. The second regime immediately implies that the
orientation angle θ does not change with the shear rate _γ, see
also the Discussion section below. Moreover, as a direct
comparison between Figs. 1c, 2c, d shows, the regime between
the local minimum and the local maximum of Gyyð _γÞ coincides
with the regime of the mG � _γ scaling, in which the orientation
angle θ remains constant and the ring thus merely unfolds,
growing in all directions—precisely the inflation phase mentioned
above. This scaling lasts for about one decade in _γ, beyond which
the slope of mG becomes again smaller and the tilt angle starts
decreasing again with the shear rate. At this stage, inflation is
complete and the ring is fully stretched, tilting closer to the flow
axis as _γ grows further. Figure 2e, f show that the same scenario
also holds for some selected knotted topologies, to which we will
return in the next section.

To further describe, analyse and understand shear-induced
ring polymer inflation, we take a closer look at the N= 150 and
N= 200 rings as an example, and compare Supplementary
Movies 7–14.

In the tumbling regime: At _γ ffi 2:5 ´ 10�3, Gyy first reaches
the value of the anomaly maximum. We observe the formation of
a tilting axis along which the polymer stretches. Tumbling
frequently occurs and takes up substantial space in gradient

Fig. 2 Shape and orientation of knotted and unknotted ring polymers under increasing shear rate. a Anisotropy δ*. b Acylindricity cð _γÞ scaled over the
squared gyration radius at _γ ¼ 0. c Orientational resistance mG for three different 01 rings, as denoted in the label of panel d. The vertical lines denote
crossovers from the tumbling regime at the lower values of _γ to the inflation regime at higher ones. The straight lines on the left of the crossover have slope
0.6 and the ones on the right have slope 0.85 for N= 100 and unity for N= 150 and N= 200. Curves have been multiplied by constants, providing vertical
shifts as indicated in the label. d Alignment angle θ between the eigenvector corresponding to the largest eigenvalue of the gyration tensor and the flow
axis for the three 01 rings. e Orientational resistance mG for three different knotted rings of topologies as denoted in the label of panel f. The straight lines
on the left of the crossover points have slope 0.6, and the ones on the right have slope unity. The curves have been multiplied by constants, whose values
are given in the label, for visual clarity. f Same as panel d, but for the three knotted rings whose characteristics are summarised in the label.
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direction. At _γ ffi 3 ´ 10�3, tumbling becomes less gradient
intense and occurs less frequently, but the tilting becomes more
pronounced as fluctuations around the axis decrease. See also
Supplementary Movies 7–8.

During the inflation phase: Before the anomaly maximum of
Gyy, at _γ ffi 8 ´ 10�3, there are rare tumbling events as the ring
starts to stabilise and open. Less fluctuations are visible. See also
Supplementary Movies 9–10.

In the fully inflated regime: At _γ ffi 1:5 ´ 10�2, the anomaly
reaches its peak. The polymer is aligned with the tilting axis and
quite stable. Tumbling becomes extremely rare. At _γ ffi 2 ´ 10�2,
the polymer does not tumble but looks almost rigid. See also
Supplementary Movies 11–12.

Beyond inflation: For values _γ≳ 10�1, the tilt angle of the rigid
ring gets progressively smaller. Tumbling events resume as the
polymer aligns itself very closely to the x axis. See also
Supplementary Movies 13–14.

During the inflation phase and all the way into the fully
inflated configuration, a particular kind of tank-treading (TT)
motion shows up in lieu of the suppressed tumbling. Contrary to
the usual shear-induced TT in which the rotation axis lies parallel
to the vorticity direction, here we have fluctuation-induced rigid
rotations of the inflated molecule around an axis lying in the
flow-gradient direction perpendicular to its tilt, i.e., almost
parallel to the gradient direction since θ is small.

To visualise the contribution of the solvent, in conjunction with
the closed polymer topology, to this behaviour, we first compare the
flow profiles established in the flow–vorticity plane around the
polymer’s centre of mass for contour lengths N= 100 and N= 200
as shown in Fig. 3. Additional flow fields are shown in
Supplementary Figs. 1, 2. Qualitatively, the established flow fields
are similar, but at the same shear rates, the N= 200-ring
experiences a stronger backflow, and the shape and position of
the horseshoe are more visible in the flow profile. At the maximum
of the anomaly on Gyy at around _γ ¼ 2 ´ 10�2 (Fig. 1c), Fig. 3d
shows a clearly established backflow profile, while the same cannot
be said about the N= 100 ring at the same shear rate (Fig. 3a).

The transition to the inflated phase is closely related to the
pattern of inter-monomer and hydrodynamic forces acting on the
ring. Due to the development of a strongly stretched configura-
tion, the former are exclusively elastic forces from the tethering
(FENE) potentials between successive beads; contacts between
monomers are extremely rare and the excluded volume

interactions are inactive there. In Fig. 4a–c, we show the
gradient-direction component of the inter-monomer force, �Fm;y ,
as a function of the distance from the centre of mass for three
different ring sizes and shear rates slightly below, slightly above
and well above the crossover value _γ ´ for each length. The
observed force is always directed towards the centre of mass and
is the strongest near the latter, where also the tension along the
chain is the strongest, as can be seen in Fig. 4d. The gradient
component forces features, for the two longest rings that undergo
an inflation phase, a striking development as _γ ´ is crossed: a
prolonged region along the ring where �Fm;y ffi 0 develops, which
arises from the emergence of portions of the ring that remain
essentially horizontal, so that no y component of the force results,
see Fig. 6c. At the same time, the fluid streams also smoothly and
almost horizontally along these portions, see Supplementary
Fig. 2e, h, so that the ring is at stable equilibrium there. As we
move to higher shear rates, this region gets smaller, and there are
stronger forces acting on beads far away from the centre of mass.
The stretching associated with the onset of the inflation phase is
clearly seen in the significant growth of the average bond length
〈b〉 with the shear rate, shown in Fig. 4e. The degree of stretching
for a given shear rate grows with N, in agreement with theoretical
considerations on the dependence of the tension blob size on
these parameters to be presented in the Discussion section. At the
tips of the ring, as well as close to their centres, the inter-
monomer forces tend to push the beads towards the neutral plane
and they are counteracted by hydrodynamic forces of the
streaming solvent, which is deflected on the polymer, see
Supplementary Fig. 2 and the schematic panel, Fig. 4f sketching
the balance of inter-monomer and solvent-induced forces, �Fm;y

and �Fs;y , respectively, on the tips of the ring.
Referring to the typical shear rates _γ1, _γ2 and _γ3 in Fig. 4a–c, we

propose the following response patterns to shear for rings of
sufficiently large contour length. As shear rate increases from
equilibrium, ring polymers start swelling first in flow direction and
align with an axis in the flow-gradient plane. They fluctuate around
this axis, and occasionally experience tumbling because of
sufficiently strong fluctuations of the horseshoe regions. Approach-
ing _γ1, tumbling becomes enhanced and the knot starts to
experience backflow from the horseshoe regions. Near _γ2, tumbling
is almost completely suppressed. The backflow causes so much
tension along the ring that fluctuations are suppressed. For
tumbling to occur, an entire section of the ring would have to
angle towards the centre-of-mass plane. At the same time, during
the transition between _γ1 and _γ2, the alignment angle is almost
constant, so the extension of the ring in gradient direction, and by
extension the strength of shear and backflow, scales proportional to
shear rate. Eventually, transitioning from _γ2 to _γ3, the sheared
solvent flows powerfully enough to push the ring into the
flow–vorticity plane, and the hydrostatic bubble becomes less and
less pronounced. In contrast, rings with low contour length never
experience a point where fluctuations are suppressed enough to
prevent tumbling, and a local maximum for Gyy is not observed.
Additional commentary on the hydrostatic bubble is provided in
Supplementary Note 1.

Collapse of all knots and localisation in space. We have also
investigated and compared behaviour of knotted rings and report
very similar behaviour under strong shear. The diagonal entries of
the gyration tensor (Fig. 5a–c) all show the same qualitative beha-
viour, and across all knot topologies, and the anomaly is present for
Gyy (Fig. 5c). The stabilisation of the alignment angle is common
across all topological varieties as well (Fig. 5d), and we conclude
that shapewise, it is justified to talk about a generic behaviour of
ring-shaped topologies rather than just of the 01 ring.

Table 1 Crossover shear rates _γ ´ and Weissenberg numbers
Wi× from tumbling to inflation phase.

Topology N _γ ´ ½ðkBTÞ0:5m�0:5a�1� Wi×
01 100 1.4 × 10−2 1.19 × 102

01 150 1.0 × 10−2 1.57 × 102

01 200 7.2 × 10−3 1.86 × 102

31 100 1.3 × 10−2 0.66 × 102

31 200 5.2 × 10−3 0.82 × 102

41 200 3.8 × 10−3 0.52 × 102

51 200 4.5 × 10−3 0.59 × 102

52 200 6.2 × 10−3 0.62 × 102

61 200 6.6 × 10−3 0.88 × 102

62 200 7.2 × 10−3 0.86 × 102

63 200 6.4 × 10−3 0.74 × 102

71 200 7.7 × 10−3 1.05 × 102

81 200 7.9 × 10−3 0.90 × 102

The crossover values _γ ´ and Wi× for the transition from the tumbling to the inflation phase of
ring polymers with topology denoted in the left column and degree of polymerisation N in the
second-to-left. Note that for the cases of N= 100 (01- and 31-rings), a fully developed inflation
phase does not emerge and _γ ´ denotes the crossover value between the two power-law
regimes in Fig. 2b.
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All knotted sections are pulled tight (Fig. 5e) and stay small for
the remainder of the simulation, essentially filling the role of a
particularly bulky bead. This bead-like knotted section has a
preferred position on the ring, although this constraint might be
lifted as the ring aligns more and more with the flow axis. Below
this threshold, however, the knot tends to be located on the
horseshoe region of the ring (Fig. 5f), and as tumbling is suppressed,
only has tank treading as a possible way to move swiftly. In this
sense, the knotted section acts as a stabilisation anchor for the ring,
which already experiences a strongly suppressed, fluctuating form
of tank treading rather than a pronounced one22. The knotted
section adds to this effect. When the knotted section does move,
and when it manages to leave the horseshoe region, it very quickly
tank-treads to the opposite horseshoe region to stabilise there again.

Supplementary Movies 15–18 of knotted rings under shear are
provided for visualisation purposes; simulation snapshots of
knotted and unknotted rings under shear are shown in Supple-
mentary Figs. 3–9. Developments of knotted section size with time
for a select few knot topologies, contour lengths and Weissenberg
numbers (with and without HI) are shown in Supplementary
Figure 10. Additional commentary on the behaviour of knots is
provided in Supplementary Note 2.

Discussion
To understand the physical mechanism behind the transition
from the tumbling to the inflation phase and to make quantitative
predictions about its occurrence, we need to properly understand
the interplay between polymer orientation in the shear field and

Fig. 4 Inter-monomer forces and bond extension along the ring. a–c Gradient-direction component of force on beads, averaged in intervals along the flow
axis and measured relative to the centre of mass. A negative sign signifies a pull towards the centre of mass. Shear rate increases from (a) to (c). a At
_γ1 ¼ 0:020;0:006;0:003½ � for N= [100, 150, 200], Gyy first takes on the value of its local maximum. This has to be estimated for N= 100, where
monotony is maintained. b At _γ2 ¼ 0:040;0:020;0:018½ � for N= [100, 150, 200], Gyy reaches its local maximum. c At _γ3 ¼ 0:286;0:171;0:082½ � for N=
[100, 150, 200], Gyy has become substantially smaller than it was at the local maximum. d Bond extension of the N= 200-ring along the flow axis. 0.97[a]
is the average for equilibrium with the parameters given in the simulation. e Average bond extension increasing with shear rate. f A schematic view of the
inflated ring on the flow-gradient plane alongside with the polymer-induced velocity deviation field of the solvent from its undisturbed profile vs(r) in the
absence of the polymer, extracted from Supplementary Fig. 2.

Fig. 3 Flow fields in the flow–vorticity plane centred around the centre of mass �r of a 01 ring. The colour map encodes velocity magnitudes in units of
½ðkBTÞ0:5 m�0:5�. Left to right: increasing shear rates _γ ¼ 0:02;0:04;0:08 ½ðkBTÞ0:5m�0:5a�1�. Top to bottom: increasing contour length N= 100, 200.
Direct comparison between equal shear rates shows that backflow is significantly more pronounced at N= 200.
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the hydrodynamic forces imposed on it by the solvent. In Fig. 6,
we show simulation snapshots of the ring at the beginning and
the end of the inflation phase, panels 6a–d, accompanied by a
schematic blob picture in panels 6e and f that facilitates a theo-
retical treatment of the processes at hand.

In Fig. 6e, the average tilt angle θ of the ring is shown, sub-
tended by the vector corresponding to the largest eigenvalue of
the gyration tensor and the flow axis, alongside with the elevation
ye of the tip at the horseshoe region of the ring. In Fig. 6f, a top
view of the ring is shown, featuring an open ellipsoidal shape

Fig. 5 Shape and orientation of knotted ring topologies under increasing shear rate. a Gxx (flow), b Gzz (vorticity), c Gyy (gradient), d alignment angle θ,
e the number of beads on the knotted section, Nk. f Angle α between vector nk from the ring's to the knotted section's centre of mass and axis vector x̂,
under strong shear, all knot topologies behave almost exactly like a ring with the same contour length N. Different colours correspond to different knot
types, as indicated in the legend.

Fig. 6 Snapshots and sketches of a sheared ring. a Simulation snapshot of N= 200-ring at the onset of the inflation phase, on the flow-gradient (x–y)
plane.Wi= 145.06, _γ ¼ 5:6 ´ 10�3½ðkBTÞ0:5m�0:5a�1�. b As a, on the flow–vorticity (x–z) plane. c Stretched and inflated configuration on the flow-gradient
(x–y) plane.Wi= 543.95, _γ ¼ 2:1 ´ 10�2 ½ðkBTÞ0:5m�0:5a�1�. d As c, on the flow–vorticity (x–z) plane. In all four panels a–d, the solid scale bar in the centre
extends to 5 σ in all directions. e Viewed projected on the flow-gradient (x–y) plane, the ring is rendered as a succession of blobs, the largest of which is
located at the tips and has size ξT. The elevation of the tip over the neutral (flow–vorticity) plane is ye, and the tilt angle is θ. f Viewed projected onto the
flow–vorticity (x–z) plane, the ring has an oval shape and it is stretched outwards in all directions due to the backflow of solvent (denoted by the curved
green arrows), reflected at the two horseshoe-shaped regions at the tips.
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characteristic of the swelling in the vorticity direction, caused
by the backflow of the solvent reflected in the horseshoe
regions22. Due to the form of the flow pattern, shown in Fig. 3
and sketched in Fig. 6f by the curved green arrows, the whole ring
experiences an outward-pointing inflation force (akin to the
pressure in the interior of an elastic bubble), and thus it can be
thought of as a succession of tension blobs. The largest of these,
having size ξT, is located at the tips of the ring. A necessary
condition for tumbling is

ξT � ye; ð3Þ
so that parts of the upper (lower) tip of the ring can be found
below (above) the neutral plane and carried to the opposite
direction by the streaming fluid. Accordingly, we need to estimate
the dependence of ye and ξT on the shear rate _γ.

From geometrical considerations, we have

ye ffi
ffiffiffiffiffiffiffi
Gxx

p
tan θ ffi ffiffiffiffiffiffiffi

Gxx

p
θ; ð4Þ

for small values of θ, typical of the transition to the inflation
phase. The flow-direction component of the gyration tensor, Gxx,
scales in the tumbling regime as Gxxð _γÞ=Gxxð0Þ � Wi0:622,57.
Keeping in mind that Gxxð0Þ / R2

gð0Þ � N2ν with the Flory
exponent ν≅ 0.588, the above considerations yieldffiffiffiffiffiffiffi

Gxx

p � _γ0:3τ0:3R Nν : ð5Þ
The dependence of the tilt angle θ on the shear rate can be
extracted from the scaling of the orientational resistance mG ¼
Wi tanð2θÞ ffi 2θ Wi on the Weissenberg number: mG ~Wi0.6,
implying

θ � _γ�0:4 τR
�0:4: ð6Þ

Combining Eqs. (4), (5) and (6) above, together with the power
law τR ~N3ν for the dependence of the longest relaxation time of
the polymer on N, we obtain

ye � _γ�0:1 N0:4; ð7Þ
where the approximation 0.7 ν≅ 0.4 has been employed.

The magnitude of the inflating force F that stretches the ring
and gives rise to the tension blobs is set by the streaming velocity
of the solvent at the point of the highest elevation ye, and it scales
as F � _γ ye. The ensuing tension blob size scales as
ξT � kBT=F � _γ�1y�1

e , resulting, together with Eq. (7), in

ξT � _γ�0:9 N�0:4: ð8Þ
Evidently, ξT decreases with the shear rate _γ much faster than ye,
so that beyond a crossover shear rate _γ ´ , the inequality (3)
cannot be fulfilled and tumbling strongly suppressed the ring
transitioning into the inflation phase. Putting together Eqs. (3),
(7) and (8), we find the dependence of _γ ´ with N to follow a
simple power law

_γ ´ � kBT
ησ3

N�1; ð9Þ

where we have reintroduced in the prefactor the quantities
entering in the expressions of ye and F to obtain the full depen-
dence on the temperature, solvent viscosity and monomer size
as well.

There is a striking comparison that can be made here with the
case of suspensions of colloidal particles of size d under shear.
There, the Peclet number Pe, which scales as

Pe � η _γd3

kBT
; ð10Þ

expresses the typical ratio of timescales for Brownian and shear-
induced motions58. The Brownian character of the motion
dominates for Pe ≲ 1, whereas shear takes over for Pe > 1 and the

particles become fully non-Brownian for Pe≫ 1. Accordingly,
and defining a crossover value Pe×= 1 between the two regimes,
this translates, for colloidal particles, into a crossover shear rate

_γ ´ � kBT

ηd3
: ð11Þ

Comparing Eqs. (9) and (11), we see that the former is fully
consistent with the interpretation and the physical picture of the
inflated, stressed ring as a succession of N particles of size σ held
together by essentially rigid connections. The fact that it has been
derived independently, using scaling arguments from polymer
theory, and at the same time it turns out to deliver a physically
consistent picture of an inflated polymer as a rigid, non-Brownian
colloid, offers additional corroboration of its validity.

Using the typical orders of magnitude, η≅ 10 and N≅ 102
employed in this work, we obtain _γ� ffi 10�3, in satisfactory
agreement with the results in Table 1. Though we have only
simulated rings with three different N values, the results shown in
Fig. 2b and summarised in Table 1 also support the above power-
law prediction. Moreover, translating the crossover shear rate into
a crossover Weissenberg number Wi ´ ¼ _γ ´ τR and using the
scaling τR ~N3ν, we obtain Wi× ~N0.76. Accordingly, employing
ring polymers of high N guarantees that the condition of lying in
the strongly nonlinear regime, Wi×≫ 1, is satisfied. At the same
time, increasing N lowers the value _γ ´ of the shear rate at which
the transition to the inflation phase will take place, therefore
making the phenomenon more easily observable experimentally.

Once the rings enter their inflation phase, the orientational
resistance scales as mG ~Wi, directly implying θ ~Wi0: the
orientation angle remains constant during this phase and the ring
simply fully unfolds until the tension blob reaches the monomer
size. Thereafter, it behaves as a rigid, non-Brownian object for
which thermal fluctuations play no role. The highest elevation
scales as ye ~N [cf. Eq. (7)] and the hydrodynamic force on the
monomers scales, accordingly, as F � _γ N , cf. F � _γ0:9 N0:4 in
the tumbling regime.

Within the inflated phase and at the stretched limit, where the
blob size has been reduced down to the monomer size ξT ~σ= 1,
the relevant Brownian force fluctuations are not any more included
into the blob picture presented above, but they need to be con-
sidered on a single-monomer level. Close to the tips, the ring has at
this phase a locally horizontal configuration running along the
vorticity axis, with stretched FENE bonds of typical length r0= 〈b〉
≅ 1 in the inflated phase, see Fig. 4d, e. The frequency of transversal
oscillations of the monomers along the y axis is given by

ω2
tr ¼

2k
m

1� r20
R2
0

� ��1

; ð12Þ

with k= 30 [kBTσ−2] and R0= 1.5σ being the spring constant and
maximum extension of the FENE springs, respectively. At the same
time, the monomers are subject to random, Brownian forces due to
collisions with the solvent. If the tip monomers cross the (x−z)
plane as they are kicked by random forces away from their equi-
librium positions at ±ye (at x > 0 or x < 0, respectively), tumbling
events can be triggered. Setting Y(t)= y(t)∓ ye, the motion of the
monomers along the y direction, can be described by the Langevin
equation

m€YðtÞ þ ζ _YðtÞ þmω2
trye
π

sinðπYðtÞ=yeÞ ¼ ΓðtÞ; ð13Þ

with the friction constant ζ and the random noise Γ(t) satisfying the
conditions

hΓðtÞi ¼ 0; ð14Þ

hΓðtÞΓðt0Þi ¼ 2ζkBTδðt � t0Þ: ð15Þ
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Equation (13) is suitable for the description of the dynamics of the
variable y(t), as it yields a harmonic restoring force of the form
mω2

trðyðtÞ � yeÞ for small deviations of y(t) around ± ye (i.e., Y(t)
≅ 0) and a vanishing restoring force at y= 0 (i.e., Y=∓ ye).

Quantitative results about the statistical properties of the
fluctuating quantity Y(t) are discussed extensively in ref. 59.
Following the notation there, we define new variables as follows:

X ¼ πY
ye

; ð16Þ

d ¼ mω2
try

2
e

π2
; ð17Þ

Θ ¼ kBT; ð18Þ
so that—fint, the third term on the left-hand side of Eq. (13),
arises from a potential uðXÞ ¼ �d cosðXÞ as
�f int ¼ ðπ=yeÞu0ðXÞ. The properties of the probability distribu-
tion function W(X) of the variable X in the high-friction limit are
discussed in detail in Chapter 11 of ref. 59. As physically expected,
a key role is played by the ratio Θ∕d between the thermal and
elastic energies. Using the above expressions, we obtain

Θ

d
¼ π2kBT

2ky2eð _γÞ
1� r20ð _γÞ

R2
0

� �
: ð19Þ

We have denoted explicitly the dependence of the quantities r0
and ye on _γ, since the shear rate on the one hand stretches the
bonds and on the other it tilts the ring towards the flow axis.
Concomitantly, it induces two opposing trends on the ratio Θ∕d,
as is clear from Eq. (19). Using the values kBT = 1, k= 30, and
R0= 1.5 of the polymer model, together with the typical values r0
≅ 1 and ye ≅ 5 at the stretched phase (see Fig. 6a–d), we obtain

Θ=d ffi 0:004; ð20Þ
which is small, rendering the probability distribution function W
(X) strongly peaked around X= 0, i.e., y(t) is strongly peaked
around ye, see e.g., Fig. 11.9 of ref. 59. This finding is in full
agreement with our simulation results showing stable polymer
conformations with small fluctuations of the monomers of the
stretched ring around their equilibrium values and strong sup-
pression (even absence within the simulation time window) of
tumbling events. Note that in ref. 59, in addition to interactions
and Brownian forces, a constant external drift force F is con-
sidered, the effect of which is to shift the peak of the distribution
function W(X) at X= F∕d for small Θ∕d values. Here, F= 0.

The above arguments demonstrate that there is a regime in
which the polymer is stretched and the elevation ye is sufficiently
high, such that Brownian fluctuations hardly have a chance of
pushing the tip monomer below (above, for the opposite side) the
neutral plane and causing tumbling. Following up on the above
considerations, the question then arises what happens to the
rigidified polymer as _γ further grows, and after the inflation phase
during which the polymer orientation remains fixed, the rigid
object starts tilting again more towards the flow axis. As ye then
becomes smaller, Eq. (19) implies that the ratio Θ∕d will grow and
tumbling will resume. The simulations performed with time step
h= 0.05 allow us to reach higher Weissenberg numbers, and
indeed, the onset of re-entrant tumbling has been seen there. We
provide Supplementary Movies 13–14 showing the above pattern
in the post-inflation tumbling regime.

The swelling of rings in vorticity direction is exclusive to their
closed structure and their transition to the stretched, inflated
configuration is size specific. Accordingly, we surmise that this
property could be employed in a simple microfluidic device to
enhance separation of large and small rings in a mixture under
Poiseuille flow. Indeed, the latter creates a parabolic velocity

profile for the Newtonian solvent in which the mixture is sus-
pended, causing thereby a position-varying shear rate _γðyÞ across
the gradient direction y. This local shear rate has a maximum
close to the walls and vanishes in the middle of the channel. Large
rings exposed to high shear close to the walls will inflate and
stretch, orient themselves almost parallel to the wall and thus be
subject to both steric constraints with one another and strong lift
forces from the wall. It is thus natural to expect that they will
migrate towards the centre of the channel, and displacing from
there smaller rings that will be pushed towards the walls. In this
way, a flow-induced size separation via focusing of the large rings
in the middle can be achieved. The same scenario has been put
forward for mixtures of linear chains and rings in Poiseuille flow
with explicit walls, and it has been recently confirmed by
employing MPCD simulations for dilute and semidilute solutions
that such a mechanism indeed plays an important role in focusing
the rings towards the channel centre, while linear chains migrate
to the vicinity of the walls60.

We have shown that ring polymers in the presence of fully
developed hydrodynamic interactions behave remarkably different
from chains, stars, branched or cross-linked polymers under pure,
steady shear alone. They show a unique inflation in the vorticity
direction because of a well-established backflow, which highlights
the importance of carefully realised hydrodynamics when dealing
with such closed topologies. For rings with high contour length, an
interplay between alignment at an angle to the flow axis and the
backflow causes the ring to self-stabilise in gradient direction and
leads to a strong suppression of tumbling and a suppression of tank
treading. The entire object looks and behaves more like a rigid ring
in this configuration, and it behaves in this way even in the presence
of complex knots along its backbone. Contrary to recently reported
polymer-stretched states that appear at ultrahigh shear rates, require
nonlinear flow profiles and also depend on box shapes and sizes61,
the inflation phase reported here appears at moderate shear rates,
corresponding to Wi≅ 100, and it is present for linear velocity
profiles as well as robust with respect to changing the simulation
box size. On the basis of these phenomena, we suggest a potential
microfluidic filter to separate rings from chains, or rings of different
sizes from each other60. As a knotted section on a sufficiently long
ring has very sharp tank-treading-like transitions from one side of
an open ring to another, we also envision that fluorescence tech-
niques could be used to detect the presence of such a tight knot on
a ring.

Although this work was focused on single-molecule numerical
experiments, future extensions should focus on the effects of
shear and of the ring-stretching transition to the rheological
behaviour of dilute or semidilute ring polymer mixtures, as well
as on the interplay between inflation and polymer rigidity. The
former should be directly comparable with rheology experiments
on ring polymer solutions, whereas the latter system can be
realised by employing, e.g., short DNA rings. Work along these
lines is currently under way.

Methods
Multi-particle collision dynamics. The MPCD technique53,62 allows us to simu-
late a particle-based, mesoscopic solvent with fully developed hydrodynamic
interactions. MPCD features two alternating steps: streaming, where particles
propagate, and collision, where one separates the system into smaller cells of length
a and computes the centre-of-mass velocity vCM in each, performing a random
rotation of all deviations of the cell–particle velocity vectors from the latter, and
adding it back to produce new, post-collision velocities. Because our simulations
involve shear, the system would continuously heat up by viscous heating. To
prevent this, we apply a cell-level Maxwellian thermostat62. We employ the usual
choice of parameters22,62 with a collision cell length a as a unit of length and
rotation angle χ= 130∘. All solvent particles are assigned a mass of m, serving as
the unit of mass. We set the average number of solvent particles per cell as 〈Nc〉=
10 and the MPCD collision time step h ¼ 0:1 ½ðkBTÞ�0:5m0:5a�, with kB being
Boltzmann’s constant and T the absolute temperature. With our choice of
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parameters, the solvent dynamic viscosity η yields the value η ¼ ηkin þ ηcol ffi
8:70 ½ðkBTÞ0:5m0:5a�2�, where ηkin and ηcol are the kinetic and collisional con-
tributions to the viscosity62. In addition, we have tested the influence of the time
step h for the N= 150-ring at h= 0.05 and present these results in Fig. 1a–f. The
ring in a simulation with such a halved time step shows the same behaviour. The
solvent in these simulations has an altered viscosity of η ffi 16:67 ½ðkBTÞ0:5m0:5a�2�
in accordance with values quoted in the literature62. We also performed simula-
tions of selected chains and rings in which HI has been switched off22,51,52. The
results obtained from those are summarised in Fig. 1g–i.

Lees–Edwards boundary conditions. The shear in our simulation is implemented
by Lees–Edwards boundary conditions54 with a prescribed shear rate _γ. With x̂; ŷ
and ẑ being the flow, gradient and vorticity directions, respectively, these boundary
conditions establish the velocity profile of planar Couette flow of the solvent in the
absence of a polymer as vsðrÞ ¼ _γyx̂.

Molecular dynamics. We employ the Kremer–Grest bead–spring model63,64 to
investigate the properties of a fully flexible polymer. We employ ϵ= kBT= 1.0 and σ
= a= 1.0 as units of energy and length from the Weaks–Chandler–Andersen (WCA)
potential, respectively. We set the parameters for the FENE potential to k= 30 ϵσ−2

and R0= 1.5 σ. With these settings, the expected bond length 〈lb〉= 0.965 σ. Velocity-
Verlet65 with a time step δt ¼ h=100 ¼ 0:001 ½ðkBTÞ�0:5m0:5a� was used to solve the
MD equations of motion. This algorithm is easily coupled to MPCD by setting the
mass of each monomer M= m〈Nc〉 and having the monomers participate in the
collision step22,62. We have chosen to use the Alexander Polynomial66 to detect and
the minimum-closure scheme to localise67 the knotted section on all simulated rings
carrying knots. Simulating the various polymers in equilibrium allows us to determine
as well their longest relaxation time τR, from which the Weissenberg number68 Wi ¼
_γτR can be extracted for different contour lengths. A summary of the relaxation times
is given in Supplementary Table 1.

GPU and system size. Our code has been written with CUDA/C++69 to run in
parallel on a GPU cluster70. This enabled more extensive simulations over a
longer period of time to study flow profiles in detail. We also increased the
simulation box volume to minimise residual effects by system size limitations.
Our box sizes were V= (100 × 60 × 60)a3 for a number of monomers N = 100
and V= (150 × 80 × 80)a3 for N= 150 and N= 200. We have tested the influ-
ence of the box size by running a simulation with V= (200 × 120 × 120)a3 for N
= 150, which consistently reproduced the same behaviour. Boxes are elongated
in the flow direction x̂ to accommodate the stretched polymer there, and
quadratic in the gradient- and vorticity directions ŷ and ẑ. Our findings on the
polymer conformation do not depend on the box size although the details of the
solvent flow show signatures of finite box sizes, such as vortices away from the
region occupied by the polymer.

Image processing. All data have been visualised using matplotlib, a Python
library. Figure 4f and Fig. 6e, f were created with the Inkscape software. Snapshots
and videos were created using VMD71.

Data availability
The relevant data sets generated during and/or analysed during this study are available
from the corresponding author on reasonable request.

Code availability
The CUDA/C++ code employed for generating the data in this study is available from
the corresponding author on reasonable request.
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