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Effects of topological constraints on linked ring
polymers in solvents of varying quality

Zahra Ahmadian Dehaghani, a Iurii Chubak, b Christos N. Likos *b and
Mohammad Reza Ejtehadi *ac

We investigate the effects of topological constraints in catenanes composed of interlinked ring polymers

on their size in a good solvent as well as on the location of their y-point when the solvent quality is

worsened. We mainly focus on poly[n]catenanes consisting of n ring polymers each of length m

interlocked in a linear fashion. Using molecular dynamics simulations, we study the scaling of the

poly[n]catenane’s radius of gyration in a good solvent, assuming in general that Rg B mmnn and we find

that m = 0.65 � 0.02 and n = 0.60 � 0.01 for the range of n and m considered. These findings are

further rationalized with the help of a mean-field Flory-like theory yielding the values of m = 16/25 and

n = 3/5, consistent with the numerical results. We show that individual rings within catenanes feature a

surplus swelling due to the presence of NL topological links. Furthermore, we consider poly[n]catenanes

in solvents of varying quality and we demonstrate that the presence of topological links leads to an

increase of its y-temperature in comparison to isolated linear and ring chains with the following

ordering: Ty
catenane 4 Ty

linear 4 Ty
ring. Finally, we show that the presence of links similarly raises the

y-temperature of a single linked ring in comparison to an unlinked one, bringing its y-temperature close

to the one of a poly[n]catenane.

1 Introduction

Molecular topology of polymers has a pronounced effect on
their in- and out-of-equilibrium behavior in melts and solu-
tions. The simplest manifestations of a topologically nontrivial
state are ring or circular polymers, which can be obtained by
linking together the ends of an ordinary linear chain. In fact,
such a seemingly straightforward concatenation operation dra-
matically reduces the number of attainable states in the phase
space, resulting in an effective topological repulsion between
rings1–6 and, therefore, in far-reaching implications for the
static and dynamic properties of the systems thereof. Many
remarkable and unique features of ring polymers have been
revealed only very recently. For instance, it has been shown that
entangled ring polymer melts show an unusual power-law
stress relaxation7 and exhibit crumpled globule conformations
in equilibrium that are very distinct from the ones of entangled
linear polymer melts.8–10 Furthermore, it has been conjectured
that concentrated solutions or melts of very long rings can

undergo a glass transition purely on the basis of topological
interactions,11,12 highly likely due to extensive inter-ring
threading,13,14 whereas recently it has been shown that the
glass transition can be triggered by the enhanced segmental
activity for the rings of moderate lengths.15 Finally, even dilute
systems of rings feature intriguing properties ranging from a
lower y-temperature of ring polymers in solution16,17 to enhanced
propensity of rings to structure in confinement18,19 as well
as their behavior in microfluidic flows,20–22 which is clearly
distinct from that of linear chains.

Circular DNAs that can be found in viruses and bacteria
serve as a good example of natural ring polymers. As a semi-
flexible polymer, DNA features interesting behavior due to its
elasticity and bending properties,23–25 especially in the cyclization
process, during which a linear DNA chain turns into a cyclic one.26,27

Even more intriguing phenomena, such as supercoiling,28,29

can be observed in various types of DNA topologies. Less
studied topological structures of circular DNA are mechanically
interlocked architectures. Over the last few decades, these
structures that are mainly composed of mechanically inter-
locked ring molecules (macrocycles), such as polycatenanes,30

have been synthesized31–33 and observed in vivo.34,35 These
macromolecular structures can be potentially utilized in artifi-
cial molecular machines36 and drug delivery systems.37 The
order in which macrocycles are connected to each other leads
to various concatenation scenarios.38 The simplest possible
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structure, a [2]catenane, contains two interlocked ring polymers
(that is, a Hopf link38), whereas connecting n rings (n Z 3) in
linear, branched (also star-shaped) or cyclic fashion yields
[n]catenanes of the corresponding architecture. Furthermore,
interlocking a large number of rings in a random way results in
a catenane network,39,40 better known as an olympic gel.41,42

Among the above-listed classes of catenanes, [2]catenanes have
been widely studied by means of experimental38,43–45 and
computational46–50 methods due to their relative simplicity.
In contrast, poly[n]catenanes, that is linear sequences of n
monodisperse interlocked ring chains, with potentially much
richer bulk behavior33 have been investigated much less,33,51–53

mainly due to major challenges in their synthesis.33,54–58 The
longest up-to-date poly[n]catenane, which has been synthesized
only very recently,33 contains n = 26 macrocycles.

Despite advances in developing efficient synthesis protocols
for oligo and poly[n]catenanes, from the point of view of
polymer physics not much is known about their static and
dynamic single-molecule properties, let alone their collective
behavior and rheological response. Pakula and Jeszka51

have used a cooperative motion algorithm on a lattice to study
static and dynamic properties of isolated poly[n]catenanes.
Their results suggest that the size scaling of large enough
poly[n]catenanes in a good solvent is generally similar to that
of linear polymers with the equivalent number of monomers
(featuring same exponents) and that the relaxation of isolated
poly[n]catenanes is slower than the one of isolated linear and
ring polymer chains. More recently, Rauscher et al.53 have
employed off-lattice molecular dynamics (MD) simulations
and a Rouse mode analysis to study the dynamics of isolated
poly[n]catenanes and they have shown that due to mechanical
bonds, the dynamics is considerably slowed down at short
length scales, although the large length scale relaxation is not
reduced much in comparison to isolated linear polymers. In
contrast to usual covalently bonded polymeric chains, the
‘‘monomers’’ of a catenane are themselves short or moderately
long macromolecules, also called macrocycles, that are held
together by means of topological uncrossability constraints.
Such topological (or mechanical) bonds locally enhance
two-body contacts between Kuhn segments of neighboring
macrocycles. In principle, this irreversible topological, as
opposed to covalent, linking between the macromolecular, cyclic
‘‘monomers’’ of the poly[n]catenane, can have quantitative
effects on single-molecule scaling relations for the size of the
catenane under good solvent conditions as well as on the
location of its y-temperature, as compared to linear and ring
chains, upon worsening the solvent quality. Furthermore, it is
highly likely that such enhanced two-body interactions will affect
the properties of macrocycles within a catenane alone and that
they will depend on the number NL piercings a given macrocycle
experiences with other macrocycles, as present, for example, in
star-shaped catenane structures.

In this article, we aim at exploring these effects employing
MD simulations, outlined in Section 2. The rest of the article
is structured as follows. In Section 3, we investigate the scaling
of the radius of gyration Rg of an isolated poly[n]catenane

composed of n rings each of length m with n and m indepen-
dently under good solvent conditions, supplementing it with
mean-field, Flory-like arguments.59 In Section 4, we consider
poly[n]catenanes in solvents of varying quality and the effect of
topological bonds on their y-temperature. Subsequently, in
Section 5 we look into the properties of individual macrocycles
within a catenane by examining its swelling due to the links
with NL other macrocycles in a good solvent as well as the effect
of such topologically restricted conditions on the macrocycle’s
y-point. Finally, in Section 6 we summarize and draw our
conclusions.

2 Model and methods

We employed for all polymer architectures considered in this
work, that is for linear, ring, poly[n]catenanes, as well as star-
shaped catenanes, a single coarse-grained model that implicitly
takes into account varying quality of the solvent. In particular,
we model solvent-dependent attractions between monomers of
a macromolecule by means of a Lennard-Jones potential with
variable depth:60

ULJðrÞ ¼
4e

s
r

� �12
� s

r

� �6� �
þ eð1� lÞ; r � 21=6s;

4el
s
r

� �12
� s

r

� �6� �
; r4 21=6s;

8>>>><
>>>>:

(1)

where s is the steric diameter of each monomer, e sets the
energy scale, and we use the dimensionless coupling parameter
l to control the depth of the potential well. Setting l = 0 in
eqn (1) makes the monomer–monomer interaction purely
repulsive, hence mimicking good solvent conditions, whereas
increasing l induces attractions between monomers and there-
fore can be associated with worsening of the solvent quality
(l = 1 is the standard Lennard-Jones potential). For computa-
tional efficiency, the potential (1) was truncated and shifted at
rcut = 3s for all l a 0 (for l = 0, rcut = 21/6s).

The connectivity between covalently-bound monomers was
maintained via a harmonic potential:

UbondðrÞ ¼
K r� r0ð Þ2

2
; (2)

with the equilibrium bond length r0 = s and the spring constant
K = 1000e. Such a moderately high value of K in conjunction
with hard-core excluded volume interactions (1) renders the
bonds essentially uncrossable, hereby capable of preserving
mechanical interconnections in catenanes and avoiding any
topological changes in general.

The bending rigidity of the macrocycles was included by
means of a harmonic angle potential:

UbendðyÞ ¼
Kyðy� y0Þ2

2
; (3)

where y is the angle between two neighboring bond vectors in a
ring, the bending constant has the value Ky = 4e and the rest
angle y0 = p. Such a choice of Ky corresponds to semi-flexible
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segments with Kuhn length lk E 8s, which was computed from
the expectation value hcos ai = exp(�s/lk) for a linear polymer
with a denoting the angle between the bond vectors b1 = r2 � r1

and bs = rs+ 1 � rs. In addition, where explicitly mentioned, we
simulated fully flexible polymer chains with Ky = 0.

We performed MD simulations in the NVT ensemble at a
reduced temperature kBT/e = 0.8 using the large-scale atomic/
molecular massively parallel simulator (LAMMPS)61 and the
HOOMD-blue simulation package.62–64 The mass of each bead
m, its size s, and the energy e were chosen as fundamental
units. The equations of motion were integrated with the time
step Dt = 0.005t, where t = s(m/e)1/2.

Here and in what follows, we use the notation of Rauscher
et al.,53 where n stands for the number of macrocycles in a
poly[n]catenane, m denotes the polymerization degree of a
macrocycle itself, whereas the total polymerization degree of
the macromolecule is N = n � m. Such a notation implies that
for an isolated ring N = m. Furthermore, we will interchangeably
refer to the constituents of a catenane as to ‘‘macrocycles’’ or
‘‘rings’’. To characterize the polymer’s size, we compute its root
mean square radius of gyration, which reads as

Rg � Rg
2

� �
1=2 ¼ 1

N

XN
i¼1

ri � rCMð Þ2
* +

1=2 (4)

with ri denoting the position of the i-th monomer in the
polymer, rCM being the position of its center of mass, and the
angles h � � � i standing for a statistical average. To avoid
potential confusion, hereafter the upper case Rg denotes the
radius of gyration of catenanes, whereas the lower case rg refers
to the radius of gyration of individual ring or linear polymer
chains, as well as to that of macrocycles within a catenane.

3 Scaling relations for
poly[n]catenanes in a good solvent

As stated above, poly[n]catenanes are linear chains of mechani-
cally interlocked ring polymers. Looking at the catenanes at a
length scale comparable to the size of a single constituent ring,
it is reasonable to assume that the macromolecule is a simple
linear chain with a polymerization degree n composed of
topologically bonded ‘‘macromonomers’’ of length m. Given
this representation, the size R of a catenane under good and
athermal solvent conditions is approximately R E bnn, where b
stands for the size of an individual ‘‘macromonomer’’ and the
exponent n assumes the self-avoiding random walk value59

n0 = 0.588 E 3/5. Furthermore, since the monomeric units within
a catenane are polymers themselves, their size b in a good solvent
can be equivalently expressed as b E b0mm, where the constant
b0 is comparable to the size of a microscopic chemical mono-
mer and m again equals to n0. As a result, the total size

R E b0(mn)n0 (5)

and therefore R B N3/5, which is in full agreement with the
result for linear polymer chains of the respective length N in a good
solvent. The preceding argumentation offers a straightforward

way of estimating the size of a catenane, except that it might
not be entirely true. As will be shown below, in comparison to
(5) a more generic relation appears to hold, where the total size
R scales with n and m as

R E b0mmnn, (6)

where n = n0 and the exponent m governing the scaling of R with
respect to the macrocycle’s size is different from n and exceeds
it by about 10%.

To verify the scaling relation (6) and to determine the
exponents m and n, we systematically simulated an ensemble
of isolated poly[n]catenanes that are composed of n (n = 1, 2, 4,
8, 16, 32 and 64) interlocked ring polymers of various lengths
m (m = 10, 16, 32, 64, 128 and 256). The biggest catenane
contained N = 16 384 beads corresponding to m = 256 and
n = 64. Here, we investigate semi-flexible polymer chains with
the bending constant Ky = 4e under good solvent conditions,
l = 0 in eqn (1), to evoke comparison with the poly[n]catenanes
that have been synthesized experimentally.33 A representative
conformation of a simulated poly[n]catenane is shown in Fig. 1.
To determine the exponents m and n in the ansatz (6), we plot
the radii of gyration of poly[n]catenanes as a function of m for
different fixed values of n and as a function of n for different
fixed values of m in Fig. 2(a) and (b), respectively. The mean
radii of gyration of each poly[n]catenane used in Fig. 2 were
averaged over at least 5 (n r 8) and 10 (n 4 8) independent
simulation runs of total length T = 106 � 107t and the
corresponding error bars are smaller than the symbol sizes.
To ensure statistical significance, more independent runs
starting from different initial configurations were used for the
biggest catenanes considered (n = 32, 64 with N = 128, 256) as
their conformational relaxation is much slower compared to
shorter macromolecules.

The exponents m and n were obtained by fitting Rg of a
poly[n]catenane using the expressions Rg(m) = Amm (for a
fixed n) and Rg(n) = Bnn (for a fixed m), respectively, with the
first few initial values of Rg discarded in both cases (A, B are
fitting parameters). The dashed gray lines in Fig. 2(a) and (b)
indicate the obtained fits and the resulting values of m and n are
given in Fig. 2(c) and (d), respectively. First of all, for a single

Fig. 1 Snapshot from a simulation of a semi-flexible (Ky = 4e) poly[n]-
catenane composed of n = 64 macrocycles linked in a linear fashion each
of size m = 64 under good solvent conditions.
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semi-flexible ring, corresponding to the case with n = 1,
we obtain m = 0.602 � 0.015 (the error bars here and below
are fitting error bars), which is consistent with the value 0.588
known for linear and ring polymers under good solvent
conditions.17 Secondly, for poly[n]catenanes (n r 64) with
macrocycles of size m = 10 we observe more swollen conforma-
tion characterized by n = 0.651 � 0.004, as compared to fully
flexible linear chains of length n in a good solvent. More
importantly, we observe an increase in m upon increasing the
number of interlocked rings n in a poly[n]catenane with m
saturating around the value 0.65 � 0.02, as observed system-
atically for all n Z 2. In contrast, the n exponent decays from
0.651 � 0.004 (m = 10) to 0.60 � 0.01 (m Z 64) with increasing m,
that is converging to the value found for linear polymer
chains. Thus, given the sample parameters for m, the value
0.60 lies around two and a half standard deviations below
its observed mean 0.65. In addition, we obtained the values
n = 0.602 � 0.006 and m = 0.658 � 0.010 by directly performing
a non-linear fit with the expression in eqn (6), which is in
agreement with the saturation values of the exponents in
Fig. 2(c) and (d) calculated separately for different n and m.
For the given range of m and n, within statistical precision our
results indicate a clear disparity between m and n with the value
of m exceeding that of n by about 10%. Finally, to assess the

quality of the fits, we computed the goodness of fit parameter65

Q ¼ G�1 ndof=2ð Þ
Ðþ1
w2=2t

ndof=2�1e�tdt, where ndof is the number of

degrees of freedom in the fit and w2 ¼
PN
i¼1

yi � yfittedi

� 	

si

� �2
(si is

the standard deviation for the i-th data point yi and yfitted
i is the

corresponding fitted value). When the initial data points are
included in the fit, both for fitting m and n, we obtain very small
Q values approaching 0, which clearly indicates poor quality
of the fit. When using only higher values of n (n 4 8) and
m (m 4 32), we obtain Q E 0.3–0.8 for different m and n fits
(poly[n]catenanes with different n and m), indicating fine
quality of the results.

The difference between the values of m and n for a poly[n]-
catenane can be rationalized in terms of Flory-like arguments that
capture essential behavior of polymers in good and athermal
solvents. We now assert that the free energy of a poly[n]catenane
composed of macrocycles of length m swollen to size R beyond its
ideal size can be expressed as:

F(R) = F0(R) + Fint(R), (7)

where the first term F0(R) represents the ideal, reference
contribution to the free energy and the second term stands for
the energetic contribution coming from monomer–monomer

Fig. 2 Scaling of the radius of gyration of semi-flexible (Ky = 4e) poly[n]catenanes. (a) The radius of gyration, Rg, as a function of the macrocycle length m
for different numbers of macrocycles n in a poly[n]catenane. The dashed gray lines indicate the scaling Rg B mm with the fitted values of m shown in (c).
(b) Rg as a function of n for various m. Here, the dashed gray lines indicate the scaling Rg B nn with the fitted values of n given in (d). In (a) and (b), the error
bars are smaller than the symbol sizes.
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excluded volume interactions, Fint(R) E kBT � v(T)N2/R3, in
which N = n�m and v(T) is the excluded volume of a monomer.

To proceed further, an explicit expression for the reference
free energy F0(R) is required, and due to the presence of
topological bonds, expressing it in powers of m and n is not
as straightforward as for an ideal linear chain. More specifi-
cally, if the excluded volume interactions in a poly[n]catenane
were turned off, the topological (or mechanical) bonds within it
would break, thereby destroying the peculiar poly[n]catenane’s
architecture. Therefore, we argue that in the ideal, reference
state of a poly[n]catenane it is necessary to explicitly prohibit
the bond crossings to maintain the polymer’s architecture,
albeit omitting at the same time the excluded volume of
monomers by assuming, for example, that they are infinitely
thin. Furthermore, to avoid unnecessary complications let us
additionally assume that each macrocycle within a poly[n]catenane
possesses a trivial ring topology with no knots present. As
argued by Grosberg66 and shown by Deutsch67 in simulations,
the size R of an ideal ring polymer subject to topological
constraints scales as R E b0mn0 for big enough contour
lengths m, that is with n assuming the good solvent value
n0 = 0.588 E 3/5. Furthermore, the uncrossability conditions
between two rings lead to an additional topological excluded
volume,68 vT E (b0mn0)3 = n0m3n0, where each ring has an extent
of order b0mn0 and v0 C b0

3 is a microscopic volume. Thus, the
reference term F0(R) can be written as:

F0ðRÞ � kBT
R2

b20nm
2n0
þ v0

m3n0n2

R3

 �
; (8)

where the first term Fel E kBT � R2/R0
2 represents the entropic,

elasticity contribution with R0
1 E b0

1n1/2mn0 denoting the size
of an ideal linear chain of n self-avoiding rings each of length
m. The second term Ftop E kBT � v0m3n0n2/R3 accounts for
the additional topological exclusion between n rings that are
distributed uniformly in a volume R3, and that each of
them topologically excludes for the volume vT E v0m3n0. Upon
minimizing F0(R), we obtain that R B (nm)3/5, that is a poly-
[n]catenane with bond-crossings prohibited is a self-avoiding
chain in the number of its monomers N = nm.

In order to explicitly include the monomer–monomer
excluded volume, we combine eqn (7) and (8) and obtain an
augmented Flory free energy of the form:

FðRÞ � kBT
R2

b02nm2n0
þ v0

m3n0n2

R3
þ v

m2n2

R3

 �
: (9)

A comparison of the powers of m in the second and third terms
in eqn (9) reveals that the latter one prevails, since both v0 and v
are constants of order b0

3. More specifically, assuming that the
second term can be neglected, the size of the poly[n]catenane is
obtained as

R B n3/5m2(n0+1)/5 E n3/5m16/25, (10)

as long as m2�3n0 � m1=5 	 v0=vj j 
 Oð1Þ, that is it holds for
sufficiently large values of m. As a result, the size of the whole
poly[n]catenane scales with the number of rings n as nn with
n E 3/5, as if it was a linear chain of n monomers in a good

solvent, whereas its scaling with m features a somewhat higher
value of the exponent m E 16/25 = 0.64. As seen from Fig. 2(c)
and (d), these values for the exponents are in agreement with
our simulation results within the error bars.

In addition, the studies of Grosberg66 and Deutsch67 also
show that topological constraints have a negligible effect on
shorter rings, which scale as m1/2 with their contour length m
(m t 32 according to ref. 67). For poly[n]catenanes this scaling
would imply that R0

2 E b0
2mn in the reference free energy (8),

leading to R E b0(mn)n0 with n0 E 3/5 obtained by minimiza-
tion, that is with m = n. Interestingly, this expression is con-
sistent with the results of Pakula and Jeszka,51 who simulated
poly[n]catenanes consisting of relatively short rings on a lattice,
and found with good precision that Rg B (mn)3/5. In our case,
however, we do not observe such regime for poly[n]catenanes
with short rings, highly likely because of the bending rigidity
that dominates conformations of rings with small m.

4 Worsening solvent quality

The Flory arguments outlined in the previous section explicitly
rely on the fact that within an ideal poly[n]catenane individual
macrocycles are self-avoiding. In practice, ideal conformations
are reached through a balance between excluded volume and
attractions, at the y-point of the macromolecule. The issue
therefore is whether the y-point of the whole poly[n]catenane
coincides with that of the macrocycle that constitutes the
‘‘macromonomer’’ of the former. In this section, we set out to
explicitly verify this by examining the effects of worsening
solvent quality on poly[n]catenanes. To focus solely on the
influence of topological bonds, here we consider fully flexible
polymer chains, that is with Ky = 0 in the bending potential (3).
The gradual worsening of solvent quality is achieved by increasing
the attraction parameter l, which denotes the depth of the
Lennard-Jones excluded volume potential (1).

To determine the y-point of any sequentially connected
polymer composed of N units, we make use of the fact that
under y-conditions it exhibits random-walk behavior, which
results in the scaling of its size R with N as:

R B N1/2. (11)

The equation above offers a straightforward way of determining
the y-temperature computationally by simulating a few poly-
mers of different lengths N (big enough polymers should be
used to assure that the scaling limit of the employed model is
close) at different values of the attraction parameter l. Then,
the y-point, if it exists, will correspond to the intersection point
of the curves R


 ffiffiffiffiffiffi
N
p

plotted versus l. Furthermore, for
ring polymers with a fixed topological state, which form the
building blocks of poly[n]catenanes, it has been shown by
Narros et al.17 that the Gaussianity of conformations practically
coincides with the point at which the second virial coefficient of
the interaction between two ring polymers vanishes. Recent
studies of the relationship between conformations and inter-
actions in the systems of ring polymers under varying solvent
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conditions have also been carried out by Li et al.69 and by
Gartner et al.70

We determined the y-point of a fully flexible poly[n]catenane
composed of macrocycles of size m = 32 by simulating catenane
chains with different numbers of macrocycles n (n = 32, 48, 64
and 128) for different l and then finding the intersection point

between the curves Rgðl; nÞ

 ffiffiffi

n
p

, as shown in Fig. 3(a). All four

lines intersect in a very narrow region of l, indicating that the
y-point of the poly[n]catenane is located close to lyC = 0.265 �
0.005. To further support this, in Fig. 3(b) we plot Rg


 ffiffiffi
n
p

as a function of n for different values of l, resulting in almost
flat curves around l = 0.26. In addition, to compare with
the latter result we determined the y-temperatures of linear
and ring polymers, yielding the values lyL = 0.28 � 0.01 and
lyR = 0.288 � 0.005, respectively. In agreement with ref. 17,
we obtained that ring polymers feature a lower, although by a
small amount, y-temperature than linear chains (note that
temperature is inversely proportional to l). Interestingly, the
poly[n]catenane possesses a higher y-temperature in comparison
to both linear and ring polymers with the relative difference
amounting to approximately 1 � Ty

L/Ty
C = 1 � lyC/lyL E 5% in

temperature for the former case. As each macrocycle within a

catenane is pierced by two (or by one at the ends) other macro-
cycles, such piercings effectively act as additional attraction spots
within the backbone as the solvent quality is being worsened.
Moreover, each ring experiences surplus pressure due to topo-
logical interaction with other rings. Apparently, both effects
in conjunction make it easier for a poly[n]catenane to collapse,
if additional attraction between its monomers is introduced, and
consequently leads to heightening of its y-temperature.

In retrospect, this also offers additional confirmation of the
Flory argument presented above, now applied to real mono-
mers with excluded volume and attractions: as the temperature
is lowered and the y-point of the poly[n]catenane is reached, at
which the latter features ideal, Rg B n1/2 scaling, its constituent
macrocycles are still scaling as self-avoiding walks, rg B mn0.

5 Effect of linking on the ring’s size
and h-temperature

Based on the above findings that underline the effect of
topological constraints on polymer sizes and scaling, we
now investigate in more detail the effect of linking on the size
and y-temperature of a ring polymer within catenanes.

Fig. 3 Influence of molecular architecture on the location of the y-point. The radius of gyration, Rg, of a linear catenane composed of n interlinked ring
polymers of length m = 32 and scaled over

ffiffiffi
n
p

as a function of (a) l for different n and (b) n for different l, values of which are indicated in the legend. The

radius of gyration, rg, of (c) linear and (d) ring polymers of different length m scaled over
ffiffiffiffi
m
p

as a function of l. In (a), the gray solid, dotted, and dashed line
indicate the location of the y-temperature of the linear catenane (lyC = 0.265 � 0.005), linear chain (lyL = 0.28 � 0.01), and ring (lyR = 0.288 � 0.005),
respectively, as determined by the condition (11) (the shaded area around vertical lines corresponds to the uncertainty regions for each determined
y-point). Error bars of each data point are in general comparable with its symbol size.
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First of all, we report that rg of a ring polymer within a
catenane (either a poly[n]catenane or a star-shaped one)
depends neither on the catenane’s architecture, nor on the
absolute location of the macrocycle within it, but only on the
number of other rings NL to which the given one is linked. In
Fig. 4(a), we show the radius of gyration of semiflexible ring
polymers with NL = 0, 1, 2 under good solvent conditions,
obtained from the simulations of poly[n]catenanes with the
same n and m as the ones used in Section 3 (for a fixed m, the
statistics were gathered over all corresponding macrocycles in
poly[n]catenanes of every length n considered). We observe that
the presence of a link increases the size of a ring with rg of the
latter monotonically rising with NL (for example, the rings with
NL = 2 are swollen by about 10% in comparison to the ones
with NL = 0, as seen in the inset of Fig. 4(a)). However,
the linking does not affect the scaling of the single ring’s size
with its polymerization degree m and the measured exponent
approaches 0.60 � 0.01 for longer rings. Furthermore, for small
m = 10 and m = 16 whose length is of the order of the

macrocycle’s Kuhn length (lk E 8s) the swelling ratio due to
a link, defined as rg(NL)/rg(NL = 0), slightly increases with NL.
We note that this enhancement rises with the macrocycle’s size
m and for the units that are long enough compared to the Kuhn
length this ratio appears to approach a universal form as can be
seen in the inset of Fig. 4(a) for m = 128 and 256. Therefore,
we conjecture that rg of a linked ring in a good solvent can be
written as rg(NL,m) B Z(NL)mn, where Z(NL) is a universal
function. To support this hypothesis, we simulated relatively
short fully flexible rings (Ky = 0 in eqn (3)) with m = 32, 48, and
64 for higher values of NL (up to NL = 5) in star-shaped catenane
structures in good solvents (l = 0 in eqn (1)). The gyration radii
of fully flexible rings as well as the corresponding swelling
ratios rg(NL)/rg(NL = 0) are shown in Fig. 4(b). For every m
considered, we observe almost identical forms of the swelling
parameter, as shown in the inset of Fig. 4(b). The swelling ratio
increases with NL, with its derivative decreasing at the same
time, meaning that the successive addition of each link
increases the size of a ring less than the addition of the
previous one, indicating that Z(NL) might saturate at a constant
value for a high number of links. These results suggest that
Z(NL) is indeed a universal function for linked rings under good
solvent conditions, however a more thorough study of catenane
structures featuring higher NL is necessary to determine
its actual functional form. Finally, coming back to the
obtained scaling relation (10) for the poly[n]catenane, we see
that although the macrocycle itself in the catenane scales as
rg B b0mn0 = b0m3/5, the whole macromolecule (i.e., the poly-
catenane) does not simply scale as R B rgnn, which would imply
that eqn (5) holds instead of eqn (10). The answer is that the
correct scaling is, of course, R B hbminn, where hbmi is the
expectation value of the effective bond distance between two
successive, linked macrocycles. There is no a priori reason to
expect that this will scale the same way as the rg of the
macrocycle in the catenane. Due to the additional topological
repulsions caused by the mutually penetrating/linked strands
of the successive macrocycles, the average bond length scales as
hbmiB mm with m = 16/25, resulting in the anomalous exponent
of the overall scaling of the polycatenane.

We finally turn our attention to the effect of linking on the
y-temperature of a ring polymer within an [n]catenane. To deter-
mine the y-points, we simulated a fully flexible star-shaped
[7]catenane, composed of three arms, each consisting of two
macrocycles interlinked with a common central ring. Therefore,
this structure contained one ring with NL = 3, three rings in the
interior with NL = 2, and three rings at the end of each arm with
NL = 1. As other rings linked to a given one impose additional
uncrossability constraints, they can be effectively treated as
fluctuating poles that topologically restrict the phase space of
the central ring. Upon worsening the solvent conditions, the
piercing rings, depending on the interactions with the central
ring, can either (a) serve as additional attraction centers (if all
interactions are attractive), which is beneficial for the collapse of
the central, pierced ring, or (b) oppose the collapse (if cross
interactions as well as interactions between piercing rings are
repulsive). Therefore, to distinguish these two cases and to

Fig. 4 Influence of linking on the radius of gyration of individual ring
polymers within a catenane. The radius of gyration rg of semiflexible (a) and
fully flexible (b) rings interlocked with different numbers of other rings of
the same type NL plotted versus their polymerization degree m on a log–
log scale. The solid gray lines in (a) and (b) indicate the scaling behavior
rg B mn with nsemiflexible = 0.60 � 0.01 and nflexible = 0.62 � 0.01 obtained
for the values of m considered. Insets: The swelling ratio rg(NL)/rg(NL = 0)
of linked rings as a function of NL. In each case, error bars are smaller than
the corresponding symbol sizes.
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study the effect of such potentially different interactions on the
y-point of a linked ring, we considered two distinct models:
(1) in the first one (left column of Fig. 5), interactions among
all monomers are attractive (that is, the same l); (2) in the
second one (right column of Fig. 5), interactions only among
the monomers within a target macrocycle are attractive with a
given l, whereas interactions among all other monomers as
well as the cross interactions are completely repulsive (l = 0).

Accordingly, we simulated the same structure for different
lengths m of the constituting macrocycles to determine the
y-point using the procedure outlined in Section 4 and the results
are as follows. For the first model (see Fig. 5(a), (c), and (e)), we
were able to define a y-point for each fixed number of links NL,
with the resulting values being very close to each other and
approaching the one of a poly[n]catenane lyC = 0.265 � 0.005. In
the other case (see Fig. 5(c), (d), and (f)), we found a y-point only

Fig. 5 Determining the y-temperature of a linked ring polymer in a star-shaped [7]catenane. Left column: interactions among all monomers are attractive
as indicated by the blue color on the sketches in the insets. Right columns: interactions only among the monomers within a single macrocycle are attractive,
whereas all other interactions are fully repulsive as indicated by the red color on the sketches in the insets. Rings for which the statistics was sampled are
indicated by dashed lines. The radius of gyration of a ring polymer rg scaled over

ffiffiffiffi
m
p

as a function of the attraction parameter l for NL = 1 (top row), 2 (middle
row), and 3 (bottom row) for both systems. For the first system, the y-point for each NL lies very close to the one of a poly[n]catenane lyC = 0.265 � 0.005
(the solid gray lines in (a), (c), and (e)). For the second system, we were able to define a y-point only for the case with NL = 1 using three biggest m = 64, 128,

and 256 considered, resulting in lyNL¼1 ¼ 0:268þ 0:005 (the solid gray line in (b)). No such points can be defined for panels (d) and (f).
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for the case with NL = 1, although considering only rings of bigger

size (m = 64, 128 and 256), giving the value lyNL¼1 ¼ 0:268þ 0:005,

which is also very close to the one of the poly[n]catenane. For
NL = 2 and NL = 3 we did not find a common intersection between
three successive ring lengths even for m = 64, 128 and 256,
however it might still be possible to define the y-point when
much longer rings are considered, that is when two-body contacts
imposed by the topological bonds become less pronounced. Here,
the effects of the neighboring rings that have pure, repulsive
interactions with the target one and exert on it additional osmotic
pressure from the exterior are crucial and they lead to a lack of
intersection of all curves at a common point.

6 Conclusions

We have studied the effects of topological (mechanical) bonds
on the size of poly[n]catenanes in a good solvent as well as
on its y-temperature upon worsening the solvent quality.
Employing Flory-like arguments, we have shown that in a
good solvent the size of a poly[n]catenane can be expressed as
Rg B mmnn where n is the number of macrocycles in the
catenane, m is the size of a macrocycle, and m E 16/25 and
nE 3/5. In our simulations of semiflexible poly[n]catenanes, we
have found a discrepancy between the two exponents, yielding
values of m and n comparable with those predicted by the Flory
theory. Furthermore, our results indicate that the size of a ring
polymer of length m interlocked with NL other rings in a good
solvent can be expressed as rg B Z(NL)mn (n E 3/5) with Z(NL)
being a universal monotonically rising function of NL. We have
studied the influence of topological bonds on the y-temperature
of poly[n]catenanes that has been found to be about 5% higher
than the one of ordinary linear chains. Moreover, we have found
that Ty

catenane 4 Ty
linear 4 Ty

ring. Finally, we have shown that
similar heightening of the y-temperature occurs if individual
ring polymers are interlocked with other rings, and we have
found that the resulting y-temperature of linked rings is very
close to the one of poly[n]catenanes.
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