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ABSTRACT
We explore effective interactions in dilute polydisperse ring polymer solutions. Based on a topolog-
ical and threading analysis, we deduce the steric, topological and threading contributions to the
effective potentials for differently sized rings. Additionally, we quantify the contribution of topolog-
ical constraints for different asymmetries of the ring length. Further, we compare how the effective
potentials changewhenmutual ring threading is restricted andwe characterise the threading depth
distributions at different center-of-mass ring separations.
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1. Introduction

The universal properties of ring polymers, which are fre-
quently found in nature in the form of plasmid, bacterial,
mitochondrial or extra-chromosomal circular DNA, are
being progressively unravelled [1]. The fixed topology,
restricting the available phase space in comparison to
linear polymers, is difficult to include in effective theo-
ries, but has profound consequences on the properties of
ring melts and solution in comparison to linear polymer
systems. One of such properties is the effective interac-
tion between two long polymer loops that exhibits a part
originating solely from the topology [2]. The presence of
the topological non-concatenation condition, in contrast
to linear chains, generates an interesting non-Gaussian
shape of the effective potential with a plateau at small
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This article has been corrected with minor changes. These changes do not impact the academic content of the article.

centre-of-mass separations r and a higher amplitude of
the interaction potential at r = 0. As a consequence, for
example, dilute ring polymer solutions feature a higher
tendency to structure at confining walls in comparison to
dilute linear polymer solutions [3]. The topological inter-
action at dilute conditions is the focus of the present work
too.

Naturally, topological effects manifest themselves
stronger at high system densities, where the rings are
forced to reconcile high overlap concentration and many
simultaneous non-concatenation conditions. This bal-
ance then leads to compact globular ring conforma-
tions and their territorial arrangement is reminiscent of
out-of-equilibrium (linear) chromosome conformations
found in eukaryotes with long genomes. The similarity
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is conjectured to be not coincidental, but arising from
biological times being short in comparison to the time
scale required to reach relaxed state of linear chains
[4,5]. The latter are so long precisely because of the con-
straints preventing the chains to cross each other and
hence topology governs the physical properties of chro-
mosomes. This is one of the reasons why a lot of effort
has been put forth to understand the behaviour of non-
concatenated rings in melt. Some scaling theories, in
order to find a proper form of the nonconcatenation free
energy cost, build on understanding a simpler case of a
few loops at lower densities where rings are not strongly
deformed [6]. Such attempts are also useful in the con-
text of chromatin [7], because at scales smaller than the
whole chromosomes, the chromatin features loops that,
although being possibly quite long, are typically shorter
than the entanglement length scale and hence are not
subject to strong topological compression. The loopy
domains and their mutual interactions have biological
importance [8]. They arise by the process of extrusion
by the action of a group of specialised protein complexes
(structure maintenance of chromosomes) that stops at
particular locations on the genome. Therefore, their size
and locations vary and hence their interactions as well.
For these reasons, in this paper we focus on the charac-
terisation of the effective potential of loops of different
sizes with the emphasis on the topological part of the
interaction.

The interaction between topologically constrained
polymers has in addition particular consequences on
their dynamics. In dense systems, the so-called threading
conformations, where one polymer segment is intersect-
ing the loop opening of another, slow down the polymer
diffusive dynamics. Such threading events are correlated
with a slower dynamics of equilibrium systems of rings
[9,10], significantly impact viscosity when the rings are
long [11] or when the threadings are enhanced by out-
of-equilibrium conditions [12,13]. The threadings form a
particular subset of the topologically allowed conforma-
tions and therefore we investigate how they impact the
effective interaction potential in general and its topolog-
ical part in particular.

In [14,15], the authors extend the work [16] and
study the effective potential of differently sized rings
of different topologies. The effective potential Veff (r) is
obtained from Monte Carlo (MC) simulations by Boltz-
mann inversion of the radial distribution function. The
simulations were performed with polymer length limited
to N = 100 hard-sphere monomers and the effect of size
was studied for different topologies only (01 and 31 in
the classical knot terminology). The work reports a small
range of attraction for small separations if the larger ring
is unknot and for two equally sized unknots. This effect

is caused by an excess entropy of the smaller ring in com-
parison to a smaller entropy loss of the larger ring that
swells a bit to accommodate the other one at small sepa-
ration. These effects are, however, N-dependent and the
limited polymer lengths do not allow to deduce accu-
rately the universal potential features and the topological
contribution to the potential. In this regard, the work [7]
reaches significantly longer lengths N = 2048 using lat-
tice bond fluctuationmodel and approaches the universal
form of the effective potential for equally sized rings. By
comparing the effective potentials for rings that can con-
catenate with those that are not allowed to, the authors
of [7] deduced the form of the topological part of the
effective potential Vtop(r). The topological potential for
equally sized rings has been also investigated in the form
of the linking probabilities in [17] on a model of self-
avoiding polygons of length up to N = 256 and in [18]
for a soft and hard spheremodels of rings up toN = 100.
It has been found that theVeff (r) has a local shallowmin-
imum at zero separation and depends for these lengths
on N and the excluded volume. Based on the effective
potential, the latter work also proposed a coarse-grained
model where a number of monomers where blobbed to
form a single unit. The model was able to reproduce the
full monomer results up to about three overlap concen-
trations using 20–50 blobs for each ring in a solution of
rings withN = 100, but was not tested on solutions with
longer chains.

Here we useMC, introduced in Section 2, to study sin-
gle ring static properties, the effective interaction poten-
tial and its topological component between two unknot-
ted rings in dilute conditions. The main results are in
Section 3. In Section 3.1, we consider properties of an
ensemble of isolated rings. More specifically, we present
knotting probability, scaling of the ring’s radius of gyra-
tion and its minimal surface area. We continue in Sec-
tions 3.2–3.4 with two-ring properties. Namely, we detail
the computation of the effective potentials, systematically
study the role of ring length asymmetry and judge on the
impact of threading events on the potential. Themethods
we use allow us to reach ring lengths sufficient to deduce
the asymptotic forms of several interesting quantities.We
discuss the results and outline further open questions in
Section 4.

2. Models andmethods

We generated a series of independent conformations of
single ring polymers in good solvent conditions using a
Metropolis MC scheme. The single ring conformations
were subsequently used in computing the effective poten-
tials between pairs ofmono- and polydisperse rings in the
infinite dilution regime.
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The fully flexible polymer chains were modelled using
the standard, Kremer and Grest bead-spring model [19]
with absent bending potential. The excluded volume
interaction between monomers was given by the purely
repulsive Weeks–Chandler–Andersen (WCA) potential
[20], thereby mimicking good solvent conditions:

VWCA(r) = 4ε
[(σ

r

)12 −
(σ

r

)6 + 1
4

]
�
(
21/6σ − r

)
(1)

with �(·) being the Heaviside step function. Two neigh-
bouring monomers were connected with a finitely exten-
sible nonlinear elastic (FENE) potential

VFENE(r)

=
⎧⎨
⎩−15ε

(
R0
σ

)2
ln
[
1 −

(
r
R0

)2]
, for r ≤ R0,

+∞, for r > R0,
(2)

where R0 = 1.5σ . The bead diameter σ was chosen as
the unit of length (σ = 1) and the simulations were per-
formed at the reduced temperature kBT∗ ≡ kBT/ε = 1.

Metropolis MC simulations of single ring polymers
were performed using translational displacements of sep-
arate monomers in combination with collective rotations
of ring arcs, the so-called crankshaft moves, as described
in [18,21]. A series of such collective crankshaft rota-
tions can potentially result in a knotted ring configu-
ration, thereby making the topological state of the ring
variable in the course of a whole simulation run. Never-
theless, the ring’s topology can be preserved by imposing
additional checks for bond crossing after every trial MC
move [3,18,21], which naturally slows down the sampling
of independent ring configurations and also limits the
magnitude of rotations that can be performed during a
typical crankshaft move [18,21]. In this work, we have
adopted a slightly different strategy: instead of perform-
ing bond crossing checks at every single trial MC move,

we simply generated a set of independent ring confor-
mations and then determined their topology separately
using the KymoKnot software [22] based on the Alexan-
der polynomial. This enabled us to efficiently sample con-
figurations of relatively large ringswith contour length up
to N = 104 and also get insight into the knotting proba-
bility in the currently employed off-lattice ringmodel.We
define one MC step as a sequence of N trial translational
displacements and one crankshaft move with arbitrar-
ily large rotations of arcs that had maximal length N/3.
In such case, almost uncorrelated configurations, as evi-
denced by the autocorrelation function of the ring radius
of gyration, defined below in Equation (3), were sampled
every 500 MC steps. For every N considered, we gener-
ated two independent runs, each havingM = 104 single
ring states.

3. Results

3.1. Single ring properties

We are primarily interested in the properties of unknot-
ted rings, and therefore we measure the fraction of knot-
ted conformations and the knot spectrum. As shown
in [23], the probability of a random closed loop
being unknotted follows an exponential law, punknot =
a · exp(−N/N0). Here, the characteristic length of ran-
dom knotting N0 is model dependent and grows with
the excluded volume from about 300 for flexible infinitely
thin segments. For our model with a significant excluded
volume, we find N0 � 6.2 · 105 (Figure 1 a), meaning
that our rings have length N � N0. Hence, our rings are
mostly unknotted, which makes the chosen method suit-
able for efficient generating the ensembles of unknots. For
the knotted content, we also evaluated the knot spectrum
confirming that the longer rings allow for more complex
knots (Figure 1 b).

For the single ring properties we measured the expo-
nent ν characterising the scaling of the ensemble-averaged

Figure 1. (a) Probability of finding an unknotted configuration in the sample of simulated rings. The black solid line indicates the best
fit punknot(N) = a · e−N/N0 for N ≥ 500 (a � 1.0007). The error bars indicate the standard error over two independent simulation runs.
(b) Probability of finding a specific knot configuration in the sample of simulated rings for few N.
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Figure 2. (a) Scaling of the ring’s mean square radius of gyration with the polymerisation degree N. The black line is the fit R2g ∼ N2ν

of the MC results (open blue circles), yielding ν = 0.588 ± 0.001 for N � 103. Right inset: normalised distributions of X = R̂2g/R
2
g for

different ring lengths N. Left inset: snapshot of a ring withN = 104. (b) Scaling of themean area of the ring’s minimal surface withN. The
black line is the fit 〈A〉 ∼ Nx of the simulation results (open blue circles), yielding x = 1.25 ± 0.01 for N � 200. Right inset: normalised
distributions of X = A/〈A〉 for different ring lengths N. Left inset: snapshot of a minimal surface of a ring with N = 6400.

radius of gyration Rg ≡ 〈R̂2g〉1/2 with the polymer length
N), where

R̂2g = 1
N

N∑
i=1

(ri − rcm)2 , (3)

and ri is the position of the bead i, rcm = N−1∑N
i=1 ri is

the position of the ring’s center of mass and the brackets
〈. . .〉 generally denote the ensemble average. To a good
accuracy (Figure 2 a) we find the ν = νSAW = 0.588 in
agreement with the values found for unknots without
excluded volume [24] and the self-avoiding walk in three
dimensions. For our model, the exponent is the conse-
quence of the latter due to the large N0. Note that Rg
values in Figure 2(a) were computed over the ensem-
ble of all configurations, however, almost identical Rg
and therefore ν were obtained for unknotted states alone.
As shown in [1,24,25] the size of an unknot without
excluded volume interactions of N � N0 is governed by
a random-walk exponent ν = 1/2, because the random
walk is typically unknotted on these scales. The topolog-
ical origin of ν = νSAW is manifested only if N � N0,
hence the ν = νSAW we observe is the consequence of the
self-avoidance. The inset of Figure 2(a) shows the nor-
malised distribution of the R̂2g/R2g. While a small finite
size effects are visible forN<500, for longer rings we see
a good collapse to a universal distribution.

Another interesting static property of the ensemble
of unknotted ring conformations is the minimal area
of a surface spanned by the ring’s contour. The (mini-
mal) surfaces, typically constrained to disk-like topology,
have been found useful to investigate static, dynamic
and threading properties in entangled regimes of systems
of nonconcatenated rings in equilibrium [10,26–28],
out of equilibrium [13,29–31], tadpole-shaped polymers
[32,33] or ‘lasso’ proteins [34]. A threading, as we define

it here, is a conformation for which a polymer segment
pierces through the minimal surface spanned on a ring
segment of another polymer. Later below we will investi-
gate the threading contribution to the effective topologi-
cal potential between two rings. The threading probabil-
ity is related to the minimal surface area that we inves-
tigate as a function of polymer length N in Figure 2(b).
Weminimise the surfaces using the procedure detailed in
[27] and for long rings we find the scaling A ∼ Nx with
the exponent x = 1.25 consistent with the one found in
[10] for lattice rings. There, it was conjectured the area
scaling is governed by the scaling of Rg as A ∼ R̂2g and
hence the true value of the exponent x was suspected to
be 2ν = 1.176. The simulations presented here concern
rings off lattice that are eight times longer than the ones
in [10], hence the exponent is less likely to be affected by
small-scale features and finite-size effects. Yet, we find the
values of x and ν with the accuracy that does not support
the conjecture. A more thorough future investigation of
this feature is necessary to rule out also systematic errors
that could, in principle, be connected to the surface min-
imisation procedure. The distribution of the normalised
minimal area A/〈A〉 exhibits a good collapse to a univer-
sal form for longer rings N>400 (inset of Figure 2 b).

3.2. Effective interaction of twomonodisperse rings

Next we examine the effective potential arising from the
interaction of two rings whose centres of mass are kept
fixed at distance r. We adopt the procedure detailed in
[18]. Letting aside the topology, the effective steric poten-
tial Vste(r), which accounts for the steric effects only, of
two rings whose centres of mass are at a distance r is
defined as

exp [−βVste(r)] = Z(r)
Z(r → ∞)

, (4)
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where β is the inverse temperature and Z(r) is the con-
strained partition function characterising ring conforma-
tions at a fixed center-of-mass distance r, i.e.

Z(r) =
∫

dR1dR2 exp (−βH(R1,R2)) δ(�rcm − r),

(5)
with H(R1,R2) being the full Hamiltonian governing
the interaction of two rings, as described by a set
of monomer positions Ri = (ri,1, ri,2, . . . , ri,N), �rcm =
|r1,cm − r2,cm|, and ri,cm being the centre-of-mass posi-
tion of the corresponding ring i. Furthermore,H(R1,R2)

can be rewritten asH(R1,R2) = H11(R1) + H22(R2) +
H12(R1,R2), where H11 and H22 entail the respective
intra-ring interactions and H12 includes the inter-ring
interaction terms. As the rings at infinite distance do
not interact, the partition function Z(r → ∞) simply
decomposes into a product of two single-ring parti-
tion functions. Hence, the steric effective potential in
Equation (5) can be recast as

exp [−βVste(r)] = 〈exp (−βH12) δ(�rcm − r)〉0, (6)

where the angles 〈. . .〉 denote the average in the ensemble
of non-interacting ring conformations.

In practice, the latter is performed using the Widom’s
insertion method [35,36]. We take two distinct rings
from the set of M single-ring conformations generated
using the MC procedure detailed above, which ensures
they are representatives of the ensemble corresponding
to the single-chain Hamiltonian. The rings are placed,
after a random rotation around their centre of mass,
at a mutual centre-of-mass distance r, and the corre-
sponding inter-ring interaction energyH12 is evaluated.
Averaging the Boltzmann factor in Equation (7) over a
set of randomly chosen M ring pairs gives the effec-
tive steric potential irrespective of whether the rings are
linked together or not (in practice, in every case we used
M = 106). Therefore,

βVste(r) = − ln

[
1
M

M∑
k=1

exp
(
−βH12

(
Rk
1,R

k
2; r
))]

,

(7)
where H12(Rk

1,R
k
2; r) is the interaction energy between

two single-ring configurations given by Rk
1 and Rk

2 that
are at the centre-of-mass distance r.

To evaluate the effective potential between noncon-
catenated rings we have to assess the mutual linking. To
do that, we evaluate the standard Gauss linking integral

m = 1
4π

∮
C1

∮
C2

ds1 × ds2 · (s1 − s2)
|s1 − s2|3 , (8)

computed over the contours of the two rings inserted
at a centre-of-mass distance r. The linking number m

is zero for unlinked rings. A linked configuration can
have m = 0 too, such as Whitehead link, which how-
ever requires a knotted conformation of one of the rings.
For simple links that are expected in the present case of
freely fluctuating configurations,m works well for deter-
mining the linking. Using this procedure on all M ring
pairs, we compute the effective potential in analogy to
Equation (7), but with a Boltzmann factor only of the
conformations that havem = 0, i.e.

βVeff (r)

= − ln

[
1
M

M∑
k=1

exp
(
−βH12

(
Rk
1,R

k
2; r
))

δm,0

]
,

(9)

equivalent to assigning an infinite energy penalty to
linked ring pairs. The topological part of the effective
potential is then given as the difference between the
effective potential and the steric effective potential

Vtop(r) = Veff (r) − Vste(r). (10)

The effective potentials, as well as their respective steric
and topological contributions, between rings of the same
length N are shown in Figure 3(a)–(c), respectively. For
lengths ofN � 2000 the potentials converge to an asymp-
totic non-Gaussian profile. The asymptotic barrier at zero
separation is about 4.5 kBT, which is consistent with [7]
and lower than previously reported 6 kBT [15,16]. This is
likely because of longer ring lengths used in [7] and even
longer ones we use here, which allow for a more accu-
rate estimate of the conformational entropy, while shorter
and coarse-grained rings systematically underestimate
the ring crumpling. Consistent with that we observe a
strongN-dependence on the Vtop(r = 0), as longer rings
at small separations are more likely to get linked than
shorter ones. In accordance with previous observations
[15], we also observe a non-monotonic profile of the
Vtop(r) with a part causing attractive force component
between the rings close to r = 0. The highest topological
barrier for largeN is about 0.6 kBT close to the separation
r = Rg/2 where the highest linking probability occurs.
Themaximum is of the order of 1 kBT in accordance with
the conjecture in [37] and [6] for the free energy cost of
the nonconcatenation between two overlapping rings in
melt. This term in the corresponding Flory theories gen-
erates a scaling of the ring sizes in accordance with the
simulation results in [6,38], but only in the intermediate
length regimes when the topological deformation of the
rings is weak. Figure 3(d) shows the comparison of the
different components and the total effective potential for
the case of N = 3200, the largest ring length for which
we were able to extract the effective interactions.
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Figure 3. Effective interactions between monodisperse ring polymers at infinite dilution. (a) The effective potential Veff(r) between
a pair of rings of the same length N for different N. (b) The steric part of the effective potential Vste(r) that does not account for the
non-concatenation condition. (c) The topological part of the effective potential Vtop(r) = Veff(r) − Vste(r). (d) The comparison between
Veff(r), Vste(r), and Vtop(r) for N = 3200.

3.3. Effective interaction of two polydisperse rings

The effective potentials for rings of different lengths are
presented in Figure 4(a)–(c). Expectedly, we find that
the amplitude of the effective interaction decreases with
increasing the asymmetry in the ring length (Figure 4
a). For a fixed size ratio N2/N1, the potentials appear
to converge to the universal form if both N1 and
N2 are large enough. In comparison to the monodis-
perse case (N2/N1 = 1) with the amplitude Veff (r =
0) at about 4.5 kBT, in the limit of large N1 and
N2 we obtain Veff (r = 0) � 3.5, 2, 1 kBT for size ratios
N2/N1 = 2, 4, 8, respectively. The effective potential
Veff (r) becomes almost entirely determined by the steric
contribution Vste(r) with increasing the length ratio
N2/N1 (Figure 4 b). The latter is due to the fact that the
tendency to find linked ring states decreases with increas-
ing N2/N1, which makes the topological contribution
Vtop(r) vanishing for large size ratios (Figure 4 c). Even
for N2/N1 = 2, we find that the maximum of Vtop about
three times smaller than in the case of N2/N1 = 1.

The plateau Veff (r = 0) decreases with increasing
length asymmetry ratio as an apparent power-law
(N2/N1)

−0.89±0.01 (Figure 4 d). We try to rationalise
this result by the following scaling considerations where,
without a loss of generality, we assume N2 ≥ N1. The
effective potential is proportional to kBT times the num-
ber of contacts C1,2 between the two chains. The latter

is proportional to the number of monomers in the over-
lap volume, being the pervaded volume of the entire
smaller chain R3g,1, times the contact probability for each
monomer, hence C1,2 = N1p(n). The contact probability
p(n) of monomers with excluded volume v0 at concen-
tration n scales in three dimensions as

p(n) ∼ (nv0)1/(3ν−1) ∼ (Nv0/R3g)
1/(3ν−1) ∼ N−1, (11)

where the exponent 1/(3ν − 1) takes into account the
connectivity correction to the nave mean-field estimate
nv0, as detailed in [39–41]. For the monodisperse case,
using (11) gives the correct result βVeff (r = 0) � 1 in
the limit of largeN. In the polydisperse case, we consider
contacts between the two chains, therefore we take as the
contact probability p(n2) ∼ N−1

2 and we find βVeff (r =
0) ∼ (N2/N1)

−1. Note that our argument is only approx-
imate because the form of the contact probability (11)
assumes both chains occupy the same volume. In our
case, however, we consider only a smaller volume R3

g,1,
while the second chain lives in a bigger volume R3g,2,
hence the connectivity correlations of the second chain
can be violated when it exits the volume of interest, which
subsequently impacts the form of the contact probabil-
ity. To see that this matters, one can reverse the roles
of the two chains in the above argument. Then one
has N2R3g,1/R

3
g,2 monomers of chain 2 in the volume of
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Figure 4. Effective interactions between polydisperse ring polymers at infinite dilution. (a) The effective potential Veff(r) between a pair
of rings of length N1 and N2. The same length ratios N2/N1 are shown with the same color. (b) The steric part of the effective potential
Vste(r) that does not account for the non-concatenation condition. (c) The topological part of the effective potential Vtop(r) = Veff(r) −
Vste(r). (d) The amplitude of the effective potential, Veff(r = 0) shown for different N1 as a function of N2/N1. The dashed gray line indi-
cates the apparent scaling Veff(r = 0) ∼ (N2/N1)−0.89±0.01. The inset highlights the fact that the behaviour of the zero-separation value
of the effective potential as a function of z ≡ N1/N2 < 1 is bracketed between the asymptotic behaviours∼z and∼z0.76, see the text.

chain 1, interacting with N1 monomers chain 1. Assum-
ing (11) for chain 1, we get βVeff ∼ (N2/N1)

1−3ν , where
the exponent is 1 − 3ν � −0.76. Attempting another
exponent in the contact probability also does not lead
to a consistent result for the scaling of the effective
potential with the length asymmetry, which signifies that
the broken correlations change the form of the contact
probability significantly. Although we cannot determine
the form exactly, we find it interesting to note that the
measured exponent of the apparent power-law βVeff ∼
(N2/N1)

−0.89 is bounded by −1 and −0.76 obtained
above, and is close to their average. We surmise that the
observed scaling βVeff ∼ (N2/N1)

−0.89 is not the expres-
sion of a genuine underlying power-law dependence but
rather the result of a superposition of power-laws with
similar yet different exponents, resulting into an apparent
such dependence.

To assess the relative importance of the topological
contribution for different length asymmetries N2/N1, in
Figure 5 we plot the ratio Vtop(r;N1,N2)/Veff (r;N1,N2).
For small separations, the topological part diminishes
even faster than Veff , while the opposite holds for large
separations. There exists a fixed point of 0.025 at around
0.875(Rg,1 + Rg,2) and thewhole profile flattens for grow-
ing asymmetry. The maximum close to the average
gyration radius is expected as many monomers are

Figure 5. The ratio between the topological and effective poten-
tial Vtop(r)/Veff(r) as a function of the centre-of-mass separation
between two rings r for different length ratios N2/N1.

located there and linking is relatively likely. We observe
that while steric part is still about 1 kBT for N2/N1 = 8
the topological part is almost negligible.

3.4. The effect of threading on the effective
interaction between rings

In addition to the topological contribution to the effective
potential we want to evaluate the influence of threading
states. We distinguish whether the two rings in question
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Figure 6. Threading properties as a function of ring centre-of-mass separation r and the length ratio N2/N1. Probability of finding a
threading conformation as a function of r for (a) monodisperse and (b) polydisperse ring pairs. pij is the probability that the ring i threads
the ring j placed at a given centre-of-mass distance r. 〈Qij〉, which quantifies the depth of threading, computed on the threading ring pairs
(Qij �= 0, solid lines) and all ring pairs (dashed lines) as a function of r for (c) monodisperse and (d) polydisperse ring pairs. (e) Distribution
of Q12 = Q21 (including cases with Qij = 0) at different fixed distances between the rings’ centres of mass for the case with N1 = 200
and N2 = 200. Distribution of (f ) Q12 and (g) Q21 (including cases with Qij = 0) at different fixed distances between the rings’ centres of
mass for the case with N1 = 100 and N2 = 200.

thread or not by analysing the piercings of one ring’s
minimal surface by the contour of the other ring. As we
show in Figure 6(a), the threading probability pij that
ring i threads ring j exhibits a high plateau at small sep-
arations, which agrees with the expectation that many
of the topologically unlinked states are threading. The
plateau level grows with N and it is natural to expect that
it asymptotically goes to unity for longer rings as locally
flat 2D surfaces cross at small separations in 3D space
with probability one. ForN1 = N2 the probability is sym-
metric p12 = p21, while for asymmetric rings the prob-
ability of being threaded is higher for higher N (Figure
6 b), because a larger surface area is exposed to the
threading.

Besides the threading probability, we also quantify
each threading state by a depth ratio of threading, defined

as Qij. In a threading configuration, the minimal surface
of ring j can be pierced multiple times, effectively split-
ting the threading ring i of length N into segments, of
lengths Ltk , between two penetrations. Typically, for non-
concatenated rings, the segments with index of different
parity reside on different sides of the surface (see also dis-
cussion in [10]). Qij then expresses the fraction of the
monomeric material of the threading ring i on one side
of the surface of the threaded ring j versus the other side.
We define Qij = Lsep/(Ni − Lsep) where

Lsep = min

( ∑
k=even

Ltk ,
∑
k=odd

Ltk

)
. (12)

The rings’ surfaces can also avoid each other, in which
case Qij = 0. As we show with solid lines in Figure
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Figure 7. Threading contributions to the effective potentials in the case of (a) N1 = 100, N2 = 100, (b) N1 = 200, N2 = 200,
(c) N1 = 100, N2 = 200. Note that ij-threading implies that ring i threads ring j.

6(c), the topologically allowed conformations exhibit a
slower decay for r > (Rg,1 + Rg,2)/2 of mean threading
depth ratio 〈Q〉 in comparison to a normal distribution
(dashed lines in Figure 6 c), when evaluated on all con-
formations irrespective of their topological state. The
normal distribution is not surprising, as 〈Q〉 is closely
related to a sum of randomly varying, finite-variance
lengths due to random orientations of the rings. Simi-
larly to the case of threading probability (Figure 6 b),
〈Q12〉 is increased as compared to 〈Q21〉 because of a
larger surface area of ring 2 in the asymmetric case
with N1 = 100, N2 = 200 (Figure 6 d). In Figure 6(e),
we present the distribution of Qij for N1 = N2 = 200
for different separations evaluated on all ring confor-
mations, i.e. including cases with Qij = 0. We observe
dominating zero threading depth, i.e. unthreading, states
at large separation, with a second peak at high values of
threading depth for zero separations. This agrees with
the observed trends for fraction of the topological inter-
action in Figure 5, where it is lower at large separations
in comparison to small separations. Similar distribu-
tions are recovered for Q12 and Q21 if asymmetric rings
pairs are considered (Figure 6f and 6g for N1 = 100 and
N2 = 200).

In analogy to topological part of the effective potential,
we evaluate how do the threading states contribute to the
effective potential. In comparison to the effective poten-
tial in Equation (9), there is an additional restriction on

the non-threading state, i.e.:

βVno−th
eff (r)

=−ln

[
1
M

M∑
k=1

exp
(
−βH12

(
Rk
1,R

k
2; r
))

δm,0δQ,0

]
,

(13)

where the additional term δQ,0 enforces the non-
threading constraint. Then the threading contribu-
tion Vth can be calculated as the difference Vth(r) =
Vno−th
eff (r) − Veff (r). In Figure 7, we plot the total effec-

tive potential under different threading conditions. For
the rings of the same length considered in Figure 7(a) and
7(b), conditioning the rings on keeping non-threaded
states increases the barrier at zero separation significantly
in comparison to the case with any kind of threading
allowed. When only one of the two threadings is allowed
(threaded or threading), the barrier is higher by about
1 kBT, that is obviously symmetric for N1 = N2. On the
other hand, for a pair of asymmetric rings (Figure 7 c), we
find that the threading of a smaller ring of the larger one,
Q12, is dominant. Once this contribution is restricted, the
barrier at zero separations increases significantly, simi-
larly to prohibiting all threading. In contrast, restricting
Q21 has little effect on the effective interaction potential,
which is quite similar to the case when all threading is
allowed.
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4. Discussion and conclusion

We investigated single ring static properties and effec-
tive potentials of disperse unknotted and nonconcate-
nated rings in a dilute limit. The large knotting length
allows us to use MC scheme that does not need to check
for bond crossings and we effectively sampled long ring
lengths that reach asymptotic characteristics in various
properties, such as Rg or the minimal surface area.

The scaling exponent of the latter can be useful in
characterising threading constraints. For example, the
work [26] uses a free energy term proportional to R2

g
to characterise the nonconcatenation condition cost in
semidilute solutions. There, the R2

g is assumed for the
scaling of the area of the minimal surface spanned by the
ring. In semidilute solution R2

g ∼ N which agrees with
the simulation results for the fraction of concatenated
rings when crossing is allowed [6] in long N ∼ 103 limit.
In contrast, here we find that the exponent of the area
scaling with N is larger than 2ν for freely fluctuating
rings. We find two possible reasons for the discrepancy:
(i) the surfaces of the ideal-like rings (ν = 1/2) are inher-
ently different from the ones of the freely fluctuating rings
and indeed display area scaling 2ν = 1 and (ii) due to the
lattice nature of the ring conformations in [26], the area
scaling can be affected by the area present close to the
ring boundary. To resolve the question one would have to
simulate longer ideal-like rings, because as shown in [26]
and [10], for the area close to the boundary is comparable
to the inner area for lengths up to about 103 for the two
simulatedmodels, which is about themaximum length in
[26]. Here we showed at least, that for the freely fluctuat-
ing rings, the area exponent appears larger than 2ν also
for the inner area, because as shown in [10] the inner
area strongly dominates the total area for the lengths we
investigate here.

Using insertion methods we computed the effective
potential between two rings. Comparing the potentials
with and without linking and threading allows us to
deduce the topological and threading contributions. We
computed these for rings with the same, and with dif-
ferent number of monomers, reaching the asymptotic
limits in some of them. Using these, we showed that the
multi-blob coarse-grainingmethod [18] parametrised on
a relatively short rings andwith a limited number of blobs
(≤ 50) gives the correct effective potentials only for the
lower N’s (6 kBT instead of 4.5 kBT at zero separation).
For longer rings, the crumpling of the rings would be
underestimated if only 50 blobs were used, giving a rise to
higher effective repulsion. Using more blobs would likely
make up for the crumpling freedom and the asymptotic
4.5 kBT would be recovered.

We observe that the topological contribution dimin-
ishes faster than the steric one for small separations and

vice versa for large separations as the length asymmetry
ratio grows, generating a fixed point at intermediate sep-
arations. Although the topological interaction becomes
almost negligible for N2/N1 ≥ 8, these effects are still
interesting when considering linking probabilities in the
asymptotic length limit for fixed asymmetry. However,
we have to take the results with caution as the Gauss link-
ing number (8) might be differently sensitive at different
ring separation due to the fact that the spectrum of links
(including ones not recognised by the linking number)
likely depends on the separation [1,17]. We consider this
being an interesting open problem.

The comparison of the effective potentials for
differently sized rings makes it interesting to investigate
bidisperse solutions at higher densities. The same inter-
action between like-sized rings as opposed to differently
sized makes it the system an interesting candidate for a
size and topology-induced separation. Clustering in ring
polymer solutions has been observed before, for shorter,
semi-flexible rings, where it occurs as a result of enhanced
threading propensity and anisotropic effective interac-
tions [42–44]. In contrast to the work [42], where the
clusters can arise despite of polydispersity, our present
work suggests a possible clustering due to the polydisper-
sity through a different mechanism. We leave for future
study whether the effective difference in the interactions
can trigger such separation at various densities.

Another novel point in this work is the quantification
of the threading contributions to the effective potential.
For the finite lengths we simulated, the states that are not
threading despite zero ring separation constitute a small,
but finite fraction of all possible states, as signified by the
barrier of about 12 kBT in Figure 7.Whether this remains
finite also in the N → ∞ limit remains a yet another
interesting open question. Furthermore, it is interesting
to estimate the impact of threading on the effective inter-
action in dilute systems of other topologically restricted
polymer architectures, like tadpoles [33] or catenanes
[45–47]. Finally, these results, in dilute conditions, are the
first steps towards a better understanding of the threading
constraints in dense systems. There, the understanding of
the threading costs hinders the construction of an equili-
bratedmelt of rings from first principles [27]. This would
further enable the development of appropriate scaling
theory that would take threading explicitly into account,
allowing for a reliable predictions on the existence of an
equilibrium topological glass.
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