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Abstract: Single and double layers of polymer coated surfaces are investigated by means of
Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear
chains. Several different surface coverages σ, as well as chain lengths N and brush separations
D, are analyzed for athermal, i.e., good solvent, conditions. The size in the form of the radius of
gyration Rg, the shape as asphericity δ∗, and orientation β∗, as well as density profiles as functions
of distance from grafting plane ρ(z), are studied. The effect of an added bond repulsion potential
to suppress bond crossing in DPD is analyzed. Scaling laws of Rg and its components Rg⊥ and
Rg‖ are investigated. We find Rg ∝ Nν, ν = 0.588 for surface coverages below the overlap surface
concentration σ∗. For σ > σ∗ we find Rg⊥ ∝ Nν⊥ , ν⊥ ∼= 1 and Rg‖ ∝ Nν‖ , ν‖ = 1/2 of ring brushes
with the standard DPD model and ν‖ ∼= 2/5 with added bond repulsion. The σ dependence
of the radius of gyration was found to be Rg ∝ σµ with µ = 1/3 for surface coverages grater
than σ∗. The perpendicular component Rg⊥ scales independent of the bond repulsion potential as
Rg⊥ ∝ σµ⊥ , µ⊥ = 1/3, whereas the scaling of the parallel component exhibits a topological repulsion
dependence Rg‖ ∝ σµ‖ , µ‖ = −1/12 for standard DPD and µ‖ = −1/6 for bond repulsion.

Keywords: DPD; polymer brush; polymer rings; computer simulation; scaling theory;
effective interactions

1. Introduction

The process of grafting polymers to a surface paves the way into a versatile and interesting field
of technological and industrial, as well as academic, uses. Oil recovery, friction, lubrication adhesion
and wetting properties, colloidal stabilization, modification of surface chemistry, biocompatibility,
protective coatings, and microfluidic devices are only some of the manifold applications conceivable
with polymer coated surfaces. Due to this broad field of application it is no wonder that, during
the last few decades, polymer brushes have been a subject of intensive study by experiment [1–13],
theory [14–31], and simulation [32–52]. Prominent reference models for the behavior of dense planar
polymer brushes are the Alexander-deGennes brush [14,15], as well as the celebrated parabolic polymer
brush emerging from the self-consistent field approach by Milner, Witten and Cates [17].

Most of the simulation work is focused on grafted linear polymer chains in various conditions.
Relatively little in known about ring polymer brushes [50]. The aim of the current contribution is to
expand the field of ring brush investigations by employing the tool of Dissipative Particle Dynamics
Simulations (DPD). We present simulation results for polymer brushes of linear and ring polymers
grafted onto a flat substrate, focusing on the differences between these two polymer geometries.
We investigate differences in statistical and structural properties such as the radius of gyration Rg,
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shape in the form of the asphericity δ∗, and monomer density profiles as a function of distance from the
surface ρ(z). We take a closer look at scaling dependence of Rg and its parallel Rg‖ and perpendicular
Rg⊥ components as functions of effective chain length N and surface coverage σ. By incorporating
the bond repulsion potential by Sirk et al. [53] we strongly reduce the possibility of bond crossing
and compare the results to standard DPD model. In a next step we investigate a combined system of
two opposing brushes, a slit confinement, bringing them closer together until we reach a compressed
bilayer brush. Here we study the aforementioned quantities in dependence of the brush distance D
and we take a closer look at the interaction force Fint and the interpenetration in the form of the integral
of overlap Iov of the two brushes.

In Section 2 we present the Dissipative Particle Dynamics Model method and our Model of the
polymer brush, as well as our implementation of the segmental repulsion model. In Section 3 we go
into the details of the simulation and we present and discuss our findings in Section 4, with the focus
on a single brush in Section 4.1 and onto the bilayer brush system in Section 4.2.

2. Model and Methods

2.1. The General DPD Model

Dissipative Particle Dynamics (DPD), in its original form, was developed by Hoogerbrugge
and Koelman in 1992 [54] and improved upon by Español and Warren in 1995 [55] as a mesoscopic
simulation tool for complex fluids. DPD is in essence a coarse-grained molecular dynamics simulation
including dissipative and stochastic interactions, where each point particle, henceforth called a
bead, represents a group of atoms or a volume of fluid. These beads interact via a purely repulsive
conservative force FC

ij , a dissipative force counteracting velocity differences between particles FD
ij , and a

stochastic force directed along the connection line between particle centers FR
ij , each being pairwise

additive. This approach was based on the description of the Brownian motion of particles in a potential
by the Langevin equation of motion, but contrary to Brownian or Langevin dynamics is momentum
conserving. The original DPD model is described by

dri
dt

= vi, (1)

mi
dvi
dt

= Fi, (2)

where ri, vi, and mi are the position, velocity, and mass of particle i, respectively. The total force Fi
acting on each bead is:

Fi = ∑
i 6=j

(
FC

ij + FD
ij + FR

ij

)
. (3)

The conservative force is given by:

FC
ij (r) =

aij

(
1−

rij

rc

)
r̂ij if rij ≤ rc

0 if rij > rc

. (4)

Accordingly FC
ij (r) is a scalar non-negative (repulsive) function determining the form of the

conservative interaction, aij is the parameter of maximum repulsion between beads i and j, rc is the
cut-off distance, rij = ri − rj the distance between particles, rij = ‖rij‖ is its magnitude, and r̂ij = rij/rij
is the unit vector from bead j to i.
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Based on extensive work of Español and Warren in 1995 [55] it is known that the stochastic FR
ij and

dissipative FD
ij forces need to be coupled together through a fluctuation-dissipation relation to ensure

that the system in thermodynamic equilibrium stays in the canonical (NVT) ensemble. This leads to

FD
ij = −γωD(rij)(r̂ij · vij)r̂ij,

FR
ij = −σDPDωR(rij)ζij r̂ij,

(5)

with the condition
σ2

DPD = 2γkBT, (6)

where γ and σDPD are parameters determining the strength of the dissipative and stochastic interaction,
kB is Boltzmann’s constant, T the temperature, and vij = vi− vj is the difference in velocity of the beads
i and j. Moreover, ζij is a symmetric Gaussian random variable with zero mean and unit variance,
which is independent for different pairs of particles and at different times. The symmetry relation
ζij = ζ ji is enforced to satisfy momentum conservation of the stochastic force, whereas ωD(rij) and
ωR(rij) are weight functions satisfying

ωD(rij) = [ωR(rij)]
2. (7)

For simplicity, the weight functions are selected to be similar in form to the conservative force FC(rij)

Equation (4), that is

ωD(rij) = [ωR(rij)]
2 =


(

1−
rij

rc

)2
if rij ≤ rc

0 if rij > rc

. (8)

Due to the fact that all interactions are pairwise additive, they obey Newton’s third law and all forces
depend only on relative positions rij and velocities vij, linear and angular momentum is conserved,
and the model is Galilean-invariant. These conditions make DPD into a consistent hydrodynamic
model particularly interesting for the study of mesoscopic soft matter systems with length and time
scales ranging from 10− 104 nm and 1− 106 ns.

Time integration is performed with a modified version of the velocity-Verlet algorithm [56]:

ri(t + ∆t) = ri(t) + ∆tvi(t) + 1
2 (∆t)2Fi(t),

ṽi(t + ∆t) = vi(t) + λ∆tFi(t),

Fi(t + ∆t) = Fi(ri(t + ∆t), ṽi(t + ∆t)),

vi(t + ∆t) = vi(t) + 1
2 ∆t(Fi(t) + Fi(t + ∆t)).

(9)

Here, λ is an empirical variable factor influencing the stability of the thermostat. The standard
velocity-Verlet algorithm would be recovered for λ = 1/2 for a force term independent of the velocity.
Because the dissipative force is dependent on the velocity however, a prediction of the new velocity ṽ
is needed and the corrected velocity is evaluated in the last step of the integration. Forces are updated
once per iteration after the second step leading to virtually no increase in computational cost.

2.2. The Brush Model

For the simulation of the polymer, a DPD bead can either be a solvent particle or a monomer.
Any two consecutive monomer DPD beads i and j forming a bond are connected via a spring force
with the spring constant bij, changing Equation (4) to

FC
ij (r) =

aij

(
1−

rij

rc

)
r̂ij − bijrij if rij ≤ rc

−bijrij if rij > rc

. (10)
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There are no angle potentials in the DPD chain, leading to a freely jointed polymer so that the bead
comprises of at least one Kuhn segment. Due to the softness of the repulsive interaction and the relative
large time step of the DPD simulation, bond crossing cannot be prevented without the implementation
of further interactions or the shift to a hard repulsive interaction potential. See Section 2.3 for more
details on the bond repulsion potential mSRP [53].

The polymers are grafted on walls parallel to the xy-plane. Periodic boundary conditions in the x
and y directions and a repulsive soft wall in the z direction, with repulsion parameter di as shown in
Equation (11), capping the top and bottom of the simulation box, are employed. To link brush polymers
to the surface, an attractive spring with the spiring constant ci was added to the end monomer or
monomers for linear or ring conformations respectively, effectively adsorbing the end monomers to
the surface. Equation (11) summarizes the additional surface force Fsur f

i added to DPD bead i, with D
being the distance between the walls, where ci = 0 for every bead except the anchored ends,

Fsur f
i =


−dizi − cizi if zi < 0

−cizi if 0 ≤ zi ≤ D

−di(zi − D)− cizi if zi > D

. (11)

Reduced variables are used throughout this paper. In DPD energy is measured in units of kBT,
length in units of the force cutoff radius rc, and mass in units of m, the mass of a single DPD bead.
In the current contribution kBT, m and rc are set to unity. The noise amplitude σDPD is set equal to
3, with Equation (6) leading to γ = 4.5. The number density ρDPD = 3 and the time integration
parameter λ = 0.65 and timestep ∆t = 0.04 were chosen according to a study by Groot and Warren [56].
Also shown within reference [56], through a series of equilibrium simulations, is that for sufficiently
high number densities (ρDPD > 2), a good approximation for the DPD equation of state is given by

p = ρDPDkBT + αaρ2
DPD (α = 0.101± 0.001). (12)

This leads to the dimensionless compressibility

κ−1 ≈ 1 + 0.2aρDPD/kBT (13)

for the DPD model of a given conservative interaction strength a = aij for all i, j pairs. According to the
discussed reference, the compressibility of water at room temperature (300K) is κ−1 = 15.9835 ≈ 16.
For the given number density ρDPD = 3 in the current work, Equation (13) in combination with the
compressibility of water, leads to an conservative interaction parameter of a = 25kBT. To simulate an
athermal polymer solution the interaction of all DPD bead species (e.g., solvent beads and polymer
beads) is set equally to a = 25kBT as well. The spring constants connecting the monomer beads to each
other is set to bij = 4 and to the surface for the fist (tails) and first and last (rings) monomer is ci = 24.
The value of the soft wall repulsion parameter is di = 100 for all beads, i.e., solvent or monomer.

2.3. Midpoint Bond Repulsion

The biggest advantage of DPD sometimes is also its drawback. Due to the soft interaction
potentials and the large time steps employed in this method, the unphysical crossing of bonds can
not be excluded. This poses a problem when one is interested in reptation dynamics in melt or
ring geometries at any concentration. The modified segmental repulsion model (mSRP) proposed
by Sirk et al. [53] offers an easy to implement and computationally cheap way to greatly reduce
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the number of bond crossing violations. The bond-bond repulsion is modeled analogously to the
conservative force in Equation (4) as

FmSRP
kl =

brep

(
1− dkl

dc

)
d̂kl if dkl ≤ dc

0 if dkl > dc

, (14)

where FmSRP
kl is the bond repulsion force acting between bonds k and l separated by distance dkl with

brep and dc being the repulsion force constant and bond-bond cutoff distance, respectively. The distance
between the two bonds is calculated as the distance between the midpoints of the respective bond
vectors. The force acting on the bond decomposes equally into bead forces for beads i and j in bond k,
Fi = FmSRP

kl · 1/2 = Fj. Adjacent bonds are excluded from all segmental repulsion interactions. In order
to guarantee the least possible amount of crossing violations but still retain most of the advantages of
the standard DPD model some of the simulation parameters need to change when applying the mSRP
potential. Namely the bond potential is now modeled as Fbond

ij = bij(b0 − rij)rij, where b0 = 0.91 is
the equilibrium bond distance and the bond force bij = 50, dc = 0.8 and brep = 25, and the time step is
reduced to ∆t = 0.01.

3. Simulation Details

Linear polymer chains, henceforth called tails and polymer rings, are investigated for various
surface coverages σ = E/A, defined as the number of chains ends E grafted on the surface divided by
the surface area A, and polymer lengths N reaching from 4 to 256 beads. A ring polymer is defined
as a chain with two ends at the surface that are connected via a bond so that Ering = 2Etail and
therefore for a given σ there are Mrings = Mtail/2 in the system with M being the number of polymers.
The simulations are carried out with DPD code written by the authors. The size of the simulation
box is chosen larger than six times the radius of gyration Rg for the investigated species in the x
and y direction. The z dimension is selected according to the studied system, e.g., wall with bulk
solution on top of the brush or slit brush confinement. The number of chains M in the simulation box is
determined by the σ of choice we want to investigate as the surface area A is set by the aforementioned
condition for the x and y direction. The last parameter we need to establish is the chain length N giving
us the number of monomer beads nmon = M · N in our simulation. With the given number density
ρDPD = 3 of our simulation model and the box dimensions Lx, Ly, Lz determined the total number
of DPD beads in the simulation is ntot = (LxLyLz)ρDPD and the number of solvent beads therefore is
nsolv = ntot − nmon. For relaxation of the system a 5× 105 step and for data generation a 5× 106 step
simulation run with a system sample every 5 steps are performed. Statistical errors are obtained by the
block averaging method and are omitted in diagrams if smaller than the symbol size. The investigated
properties comprise of density profiles perpendicular to the surface ρ(z), the radius of gyration Rg,
the square root of the squared mean distance of each bead from the polymers center of mass and its
components perpendicular Rg⊥ and parallel Rg‖ to the wall:

R̂2
g‖ =

1
2N

N

∑
i=1

[(xi − xc.m.)
2 + (yi − yc.m.)

2], (15)

R̂2
g⊥ =

1
N

N

∑
i=1

[(zi − zc.m.)
2], (16)

R̂2
g = R̂2

g‖ + R̂2
g⊥. (17)

Accordingly, we denote the coordinates of the ith monomer as (xi, yi, zi) and the corresponding
center of mass coordinates of the polymer as (xc.m., yc.m., zc.m.). In Equations (15)–(17), quantities
carrying a hat represent instantaneous values. With 〈...〉 denoting a statistical average, we show in
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what follows the gyration radius Rg, as well as its components Rg⊥ and Rg‖ defined as Rg‖ =
√
〈R̂2

g‖〉;

Rg⊥ =
√
〈R̂2

g⊥〉; Rg =
√
〈R̂2

g‖〉+ 〈R̂
2
g⊥〉. We further investigate the shape in form of the asphericity

δ∗ defined as the degree of being non spherical (i.e., δ∗ = 0 → sphere, δ∗ = 1 → rod) and the angle
between the normal to the surface and the largest axis of the equivalence ellipsoid β∗ (i.e., the longest
eigenvector of the gyration tensor). We study as well a system generated by coating two surfaces
with polymer and bringing them into contact. These brushes in slit confinement are investigated as a
function of the distance of the surfaces D, reaching from the undisturbed brush at infinite separation
to the compressed bilayer brush. We take a closer look at the mentioned quantities as well as for the
difference of standard DPD and DPD with mSRP bond repulsion added to it. Simulation parameters
that are employed are given in the Models and Methods Section 2.

4. Results and Discussion

4.1. Statistical Properties of the Brush System

We start this section with a comprehensive description of the polymer brush system with the
main focus on the difference between ring and tail geometries. Firstly we discuss the density profiles
along the direction perpendicular to the surface ρ(z) as they are shown in Figures 1 and 2.

Figure 1. Bead density ρ(z) as a function of distance from surface z for a double layer brush system
with a surface coverage of (a) σ = 0.125 brush distance D = 14z and (b) σ = 1.000 and D = 34z. Red
lines are rings N = 64, blue for tails N = 32, orange and turquoise for solvent of the ring and linear
chain simulations respectively. The dotted line depicts the total bead density of the simulation box.

Staring with Figure 1 we consider at the monomer densities ρ(z) for two different surface
coverages σ. In both cases we can clearly see solvent particles inside the brush layers even for
the highest investigated surface coverage σ = 1 in Figure 1b. Interestingly, when looking at the
total bead density, depicted as the dotted line, we see a dip at D/2 = 17z in the case of σ = 1 only.
We can also notice a slightly higher concentration of solvent particles at D/2 for the ring simulations
in contrast to the linear ones in both cases although more pronounced for the higher surface coverage
perfectly matching the slightly more step like density profiles of the ring polymer brush.
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Figure 2. Density profiles ρ(z) as a function of distance from wall z for (a) surface coverage σ = 0.125
and (b) σ = 1.0. The insets show ρ(z) as a function of the distance scaled by the chain length z/N for
the corresponding surface coverage. Red colors are rings and blue for tails.

In the following we compare ring and tail brushes in more detail. We study systems with the
same amount of effective monomers, e.g., where Nring = 2Ntail and Mring = Mtail/2, where the chain
length dependence is shown in Figure 2 and marked by different symbols. The surface coverage is
defined so that rings count as having two chain ends per molecule and that for any given σ there
are always half the number of rings with twice the amount of monomers grafted compared to linear
chains Mring = Mtail/2 and Nring = 2Ntail . Under these conditions it can be clearly seen that the
density profiles for rings and tails match quite well. The inset in Figure 2 show the density profiles
as a function of the distance scaled by the chain length z/N of the corresponding chain architecture.
The density profiles fall onto a master curve with better agreement for the higher surface coverage.
The aforementioned factor of 2 in the brush height between ring and tail brushes can be clearly
seen. Ring brushes seem to be only very slightly compressed compared to their linear counterparts.
The reason for this can be found in Figure 3 where the distribution of end monomers for tails and for
middle monomers for rings ρe(z) is plotted against the distance from the surface. The distribution
shows that the ends (or mid monomers in case of rings, respectively) can be anywhere in the brush,
although only few are at the grafting plane. It is interesting to notice that there are slight but systematic
differences between rings and tails: for the former the distributions are more sharply peaked, and the
tail towards larger z is less pronounced. This is not surprising, of course, since the mid monomer is
bound by two strands rather than a single one. The presented density profiles and end monomer
distributions are in good agreement with the results of Reith et al. and the hard bead spring model
found in reference [50]. Our results for the linear chain density profiles conform to the parabolic
brush model of Milner, Witten and Cates [17], confirmed also by monomer-based simulations in the
case of good solvent [32,33]. Atomistic models for grafted polymer melts [39], on the other hand,
lead to steplike monomer profiles, akin to that found in Ref. [35] for polymer brushes in solvent of
poor quality.
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Figure 3. Density profiles ρ(z) and density profiles of end monomers for tails and middle monomers
for rings multiplied by chain length Nρe(z) as a function of distance from surface z for (a) surface
coverage σ = 0.125 and (b) σ = 1.0 Rg. Chain length N is given in different symbols shown. Red colors
are rings and blue for tails.

The radius of gyration Rg is shown in Figure 4 as a function of the surface coverage σ. The first
feature that stands out in Figure 4a is the similarity of Rg for rings and tails with chain lengths following
Nring = 2Ntail . As mentioned before rings count as having two ends at the surface per polymer so
that the total number of monomers is the same for equal σ and Nring = 2Ntail . This is true especially
for surface coverages above the overlap concentration σ∗ = 1/(2πRg0)

2, with Rg0 being the radius
of gyration at infinite dilution. The size of the grafted polymers increases with increasing surface
coverage as the polymers start to feel each other.

Figure 4. (a) Radius of Gyration Rg as a function of surface coverage σ and (b) Rg scaled by a free
infinitely diluted chain value Rg0 as a function of surface overlap concentration σ∗. Straight lines
indicate power law fits with scaling exponents shown next to the line. Red symbols are rings and blue
for tails.

In order to quantify this stretching of the polymers with grafting density, we plot Rg normalized
by the radius of gyration of an infinitely diluted chain in solution Rg0 with the same chain length
N against the surface coverage scaled by the surface overlap concentration in Figure 4b so that the
curves for tails and rings fall onto a master curve. Chain statistics for chains below σ∗ are unperturbed
as they are without any contact to other polymers, the so called mushroom regime. Starting at σ∗
the increase in size is due to repulsion of the polymers coming into contact with neighboring chains,
the beginning of the brush regime. Strongly overlapping polymers exhibit a scaling law Rg ∝ σµ with
µ = 1/3. This scaling is independent of the conformation of the considered system, and in agreement
with the Alexander-deGennes blob model [14,15].
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Looking at the radius of gyration for a single polymer at the surface, e.g., σ → 0; σ � σ∗ as a
function of the chain length, we find that the scaling exponent equals that of a free diluted chain in
solution, Rg ∝ Nν, ν = 0.588, as shown by the triangle symbols in Figure 5. A flat surface has no
effect on the scaling of a tail or ring in the mushroom regime. On the other hand, if we increase the
surface coverage to strongly overlapping chains σ > σ∗, as shown by the circle symbols in the same
plot, the scaling exponents Rg⊥ ∼ Nν⊥ increase strongly up to values of ν⊥ ∼= 1, again showing no
difference between ring and linear chains. The reason behind the increase is the repulsion of polymers
from each other and can be clearly understood if we take a closer look at components of the Radius of
gyration, e.g., the parallel component Rg‖ and normal component Rg⊥ in Figure 6.

Figure 5. Radius of Gyration Rg as a function of chain length N. Straight lines indicate power law fits
with scaling exponents shown next to the line. Red symbols are rings and blue for tails.

Figure 6. (a) Parallel component Rg‖ (full symbols) and normal component Rg⊥ (open symbols) of
the Radius of Gyration as a function of surface overlap concentration σ∗ and (b) as a function of chain
length N for surface coverage σ = 0 (c) and σ = 1. Straight lines indicate power law fits with scaling
exponents shown next to the line. Red symbols are rings and blue for tails.

Figure 6a shows the components of the radius of gyration scaled by Rg0/
√

3 as a function of the
surface density over the overlap concentration σ/σ∗. The figure resembles that of Figure 4b as it should.
The scaling of the perpendicular component Rg⊥ with σ retains the form Rg⊥ ∼ σµ⊥ the scaling
exponent of µ⊥ ∼= 1/3 as the major part of the extension of Rg stems from expulsion of monomers
away from the surface. The parallel component Rg‖ on the other hand decreases with increasing
surface coverage as tails and loops have less and less space, indicating a consistency with a scaling
law Rg‖ ∼ σµ‖ with µ‖ ∼= −1/12. Looking at the chain length dependence of the Rg components from
Figure 6 we recover the Flory scaling exponent Rg⊥, Rg‖ ∼ Nν with ν = 0.588 for σ� σ∗ (Figure 6b),
independent of the direction of the component. Repeatedly, a different picture can be seen for σ > σ∗
(Figure 6c), where the normal component Rg⊥ nearly scales with N with an exponent ν⊥ ∼= 1 and
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the parallel component Rg‖ scales with the ideal Gaussian random walk value of ν‖ = 1/2. The fact
that we obtain identical scaling laws for brushes made of chains or rings in a DPD-simulation that
allows bond-crossing is not surprising: indeed, concentrated ring polymers, for which bond-crossing is
allowed, lack the topological potential that distinguishes them from linear chains. Accordingly, as it has
been explicitly confirmed in a recent study of concentrated ring polymer solutions [57], rings without
topological restrictions show a scaling of their gyration radius that is identical to that of linear chains.
The same also holds true, evidently, for planar brushes. The situation will change as soon as we impose
bond-noncorssability, as we will shortly demonstrate.

The above results can be rationalized in the framework of a blob model that envisions the
chains/rings as successions of blobs of size σ−1/2 for σ > σ∗. Within each blob, excluded volume
interactions are unscreened; accordingly, the number of monomers g contained in any such blob
scales as:

g ∼= b−1/νσ−1/(2ν), (18)

with the Flory exponent ν = 0.588 ∼= 3/5. For a polymer with N monomers, this implies that it will
consist of NB = N/g such blobs, viz.:

NB ∼= b1/νσ1/(2ν)N. (19)

As these blobs emerge from the wall on which they are grafted, they grow linearly in the direction
perpendicular to the wall, whereas they perform a random walk in the parallel direction. Accordingly,
the sizes in the two directions scale as:

Rg⊥ ∼= σ−1/2NB (20)

Rg‖ ∼= σ−1/2N1/2
B . (21)

Gathering together the above results, we obtain for σ > σ∗:

Rg⊥ ∼= b1/νσ(1−ν)/(2ν)N (22)

Rg‖ ∼= b1/(2ν)σ(1−2ν)/(4ν)N1/2. (23)

Finally, using σ∗ ∼= R−2
g0 together with Rg0 ∼= bNν, the above relations can be recast in the form:

Rg⊥
Rg0
∼=

1 if σ ≤ σ∗(
σ
σ∗

)(1−ν)/(2ν)
if σ > σ∗

. (24)

and
Rg‖
Rg0
∼=

1 if σ ≤ σ∗(
σ
σ∗

)(1−2ν)/(4ν)
if σ > σ∗

. (25)

Substituting ν = 3/5(0.588) in Equations (24) and (25) above, we obtain µ⊥ = 1/3(0.35) and
µ‖ = −1/12(−0.075), as found in the simulation. As mentioned above, the nearly Gaussian scaling
for rings in the parallel component is surprising, as it has been previously found [50] that R‖ ∼ Nν‖

with ν‖ ∼= 2/5 for non-catenated rings with a topological potential. The advantages of DPD seem to
be the limiting factor in this case with its soft potentials and large time steps bond crossing cannot
be excluded. To verify this statement, we take a closer look at Figure 7, where we plot results of
simulations with an added bond repulsion potential analogous to Figures 4b and 6. Starting with
the last plot in Figure 7d we can clearly see the change the additional bond repulsion has on Rg‖.
The ring in the brush now extends laterally to the wall as Rg‖ ∼ Nν‖ with ν‖ ∼= 2/5, whereas Rg⊥
retains its scaling of ν⊥ ∼= 1. For σ� σ∗ in Figure 7c we also find that the scaling of Rg⊥; Rg‖ ∝ Nν
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with ν = 3/5 is maintained, as the topological repulsion between neighboring rings plays no role
at the mushroom regime. As far as the scaling with surface coverage for σ > σ∗ is concerned, The
scaling of the perpendicular component Rg⊥ retains its characteristic scaling exponent, Rg⊥ ∝ σµ⊥ with
µ⊥ ∼= 1/3, as seen in Figure 7a,b; the topological repulsion plays no role in the directed motion of the
blobs perpendicular to the wall. On the other hand, the fact that the blobs no longer perform a random
walk parallel to the wall affects the exponent µ‖, as we now find Rg‖ ∼ σµ‖ , with the exponent now
changed by a factor 2, from µ‖ = −1/12 to µ‖ = −1/6. This change of the exponent as a consequence
of topological constraints is strongly reminiscent of the situation for concentrated ring polymer
solutions, where in the scaling law of the gyration radius with concentration, Rg/Rg,0 ∼ (c/c∗)x for
concentrations c exceeding the overlap value c∗, the exponent x changes from x = −1/8 without
topological interactions to double this value, x = −1/4, when the latter are taken into account [57].

Figure 7. (a) Radius of gyration Rg scaled by the Rg0 of infinite dilution as a function of the surface
overlap concentration σ/σ∗. (b) Parallel Rg‖ (full symbols) and perpendicular Rg⊥ (empty symbols)
component of the radius of gyration scaled by Rg0/

√
3 of infinite dilution as a function of the surface

overlap concentration σ/σ∗. Rg‖ (full symbols) and Rg⊥ components (empty symbols) as a function of
chain length N for (c) surface coverage σ = 0.01 and for (d) σ = 1.00. Red symbols are rings and blue
for tails. Straight lines indicate power laws with scaling exponents shown next to the line.

Next we take a look at the asphericity δ∗ and the perpendicularity β∗. Starting with Figure 8a,
for surface coverages below the overlap concentration δ∗ coincides very well with the predicted values
of δ∗R = 0.2551 for rings and δ∗L = 0.4303 linear chains in solution [58], with rings being the more
spherical species. With increasing surface coverage starting at the overlap, concentration rings and
tail geometries are getting compressed to a more rod-like shape approaching the limiting value of 1
of the completely stretched form. Taking a look at the distribution of δ∗ in Figure 8b, one can see the
difference between rings an linear chains are even more pronounced. For σ < σ∗ the distribution for
rings is more sharply peaked around δ∗ = 1/4 while its linear counterpart is flat and broad. For σ = 1,
on the other hand, the histogram for the ring geometry shows a more pronounced tail in direction of a
more spherical shape. This might be another contributing factor for the slightly more step-like density
profiles of ring brushes.
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Figure 8. (a) Asphericity δ∗ as a function of the surface overlap concentration σ/σ∗ and (b) asphericity
frequency distribution F(δ∗) for NR = 128 and NL = 64. Red symbols are rings and blue for tails.

To complete the investigation of the statistical properties of the ring and linear tail brush we
take a closer look at the angle between the normal to the surface and the largest eigenvector of the
gyration tensor, i.e., the largest axis of the equivalence ellipsoid. Analogous to the asphericity we
plot β∗ as a function of the surface overlap concentration Figure 9a and the distribution p(β∗) for
two different limiting surface coverages σ = 0 and σ = 1 in Figure 9b. In the case of low surface
coverage, a relatively large angle of around 60◦ is observed, implying a more surface parallel shape
with virtually no difference between ring and tail polymers. Taking a closer look at the distribution
for σ = 0, however, it becomes clear that there is no real preference of any one angle, as the peak is
broad and flat, although larger angles are more probable and again no distinction due to the different
geometries is perceivable. For high surface coverages well above the overlap concentration the
resulting angles are getting progressively smaller, i.e., more perpendicular. The discrepancy between
the different geometries is very small, only when we look at the distributions can we recognize a
difference. The peak for the ring brush is sharper than that of the linear chains. We note, further,
that the distribution p(β∗) bears significant similarities with its counterpart for short, rigid-chain
brushes, as established in atomistic simulations [43].

Figure 9. (a) Angle between the normal to the surface and the largest eigenvector of the gyration tensor
β∗ as a function of the surface overlap concentration σ/σ∗ and (b) frequency distribution F(β∗) for
NR = 128 and NL = 64. Red symbols are rings and blue for tails.

4.2. Decreasing the Distance between Two Brushes

In this section we take a closer look at what happens to our brush if we put it in contact with a twin.
We focus our interest at a single chain length and surface coverage for each geometry, i.e., Nring = 64
and Ntail = 32 both at σ = 0.5 corresponding to ≈ 26σ∗ for rings and ≈ 22σ∗ for linear chains, chosen
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for the similarity of the ring and tail brush. Included in our comparisons will be data which was
generated with the addition of the bond repulsion potential discussed in Section 2.3. We investigate the
properties as a function of the interbrush distance D scaled by the height of the unperturbed brush H
at infinite separation, defined as the height at which the monomer density ρ(z) of the brush decreases
to 2.5%, as seen in the short vertical lines at the top right corner of Figure 10a.

Figure 10. (a) Density profiles ρ(z) and end (mid) monomer distributions ρe(z). The short strait lines
vertical lines symbolize the 2.5% brush height criteria (see text). (b) Parallel Rg‖ and perpendicular
component Rg⊥ of the radius of gyration scaled with value of infinite separation RgI‖ and RgI⊥. Both
as a function of brush distance D scaled by two times the brush height at infinite separation H at a
surface coverage of σ = 0.5. Red symbols are rings with Nrings = 64 and blue for tails Ntails = 32.
Dashed lines and empty symbols for standard Dissipative Particle Dynamics (DPD) and full lines and
symbols for DPD + modified Segmental Repulsion Potential (mSRP) (with bond repulsion potential).

Regarding the density profiles in Figure 10a, we find a more elongated brush for the simulations
including the bond repulsion potential (full lines) compared to their standard DPD counterparts
(dashed lines) coinciding with an decrease in density closer to the surface. Comparing ring and tail
geometries, we find an even more step-like density profile for rings as that already seen in Figure 3.
The end monomer (linear chains) and mid monomer (rings) distributions multiplied by the chain
length are plotted as well, displaying a shift to larger distanced from the surface (swelling of the
brush). The brush height, defined above, increases in accordance with the shift in end (mid) monomer
distributions shown, decreasing the difference of ring and tail brushes but retaining the fact of higher
linear brushes.

Plotted in Figure 10b are the normal Rg⊥ and parallel Rg‖ component of the radius of gyration
as a function of brush distance scaled by brush height. From the point of contact, i.e., D/2H = 1,
to closer confinements, a drastic decrease of the perpendicular component occurs, and is slightly more
pronounced for ring geometries for both DPD and DPD + mSRP. The effect is larger for bond repulsion
simulations but followsthe same general trend. Interestingly, the parallel component increases more
profoundly for the linear chains, with the standard DPD data lying in between rings and tail geometries.
This leads to an overall larger decrease in Rg for rings, leading to a more compact form.

With decreasing distance of the polymer coated surfaces the grafted chains and rings start
to increase their interactions with the wall and each other due to the compression of the brush.
The results of this effect are shown in Figure 11a with the interaction force Fint =

∫ 0
−∞ ρ(z)zddz · (−1),

the integral of the monomer density behind the wall multiplied by the wall repulsion d at the distance
z (see Section 2.2 for details on wall repulsion). The interpenetration of brushes into each other is
plotted in Figure 11b as the integral of overlap Iov[ρ(z)] =

∫ D
0 ρ1(z)ρ2(z)dz, with ρ1(z) and ρ2(z) being

the monomer densities of brush 1 and 2, respectively. Starting with Figure 11a an increase in monomer
density behind the wall with decreasing distance D of the brushes is found for all systems. In both
cases the increase for rings is larger than for linear chains, being more distinct in the case of added
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bond repulsion. This can also be seen in the insert of Figure 11a showing the interaction potential
Vint, the integral of the interaction force as a function of scaled brush distance. Even without the bond
repulsion potential ring brushes are effectively more repulsive than their linear counterparts, with an
increased effect for added segmental repulsion. The reason behind this can be understood if we take
a look at the data of Figure 11b. Comparing ring and tail geometries, rings always show a smaller
overlap than their linear counterparts. This effect is not only due to the bond repulsion potential,
although it is increased by it. Linear chains, with their free chain ends, more easily penetrate the other
brush, whereas rings are more strongly repelled to a more compact state, increasing the force on the
wall in the process.

Figure 11. (a) Interaction force Fint =
∫ 0
−∞ ρ(z)zddz · (−1) generated by polymer beads acting on the

walls of the system. The insert depicts the interaction potential Vint =
∫

Fint. (b) Integral of overlap
Iov(ρ(z)) =

∫ D
0 ρ1(z)ρ2(z)dz. Both plots are shown as a function of brush distance D scaled by two

times the brush height at infinite separation H at a surface coverage of σ = 0.5. Red symbols are rings
with NR = 64 and blue for tails NL = 32.

5. Conclusions

We have presented results on the conformations and interactions of polymer brushes employing
DPD simulations, putting particular emphasis on a systematic comparison between brushes of linear
and ring polymers, the latter being in this case chains that are grafted on the walls on both their
ends. We have quantitatively obtained all the features of the high grafting-density regime, and in
particular the scaling of the perpendicular and lateral extensions of the polymers both with the
degree of polymerization and the grafting density. A key finding of our work is that in the absence
of consideration for the topological interaction between rings, i.e., neglecting the prohibition of
bond-crossing, rings and chains become indistinguishable; on the contrary, when the topological
interactions are properly taken into account, ring brushes become distinct from their linear counterparts:
the lateral conformation of the rings is no longer a random walk, since the topological interaction
cannot get screened out at any monomer concentration; concomitantly, the scaling of Rg‖ with both
the degree of polymerization and the grafting density picks up exponents that are unique to rings and
carries the signature of ring conformations that form a class of their own: they are neither ideal walks
nor self-avoiding walks, a feature already observed in bulk ring polymer solutions. The effects of
the topological constraints are also manifest in the interbrush interaction, where we have established
that the ring brushes feature a more repulsive interaction potential than their linear counterparts,
implying that ring polymers, when grafted onto colloids, will be stronger agents against colloidal
coagulation than linear ones [59]. This is an intriguing counterpoint to the case of added non-grafted,
non-adsorbing polymer, where it has been recently found that free rings in solution lead to stronger
depletion attractions between colloids than free linear chains. Future work with DPD simulations,
which have the great advantage of including explicit solvent in an economic way, will focus on studying
their properties under shear and the resulting effects on friction and lubrication.
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