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ABSTRACT: We investigate mixtures of ring and linear polymers in solution at
various number ratios, ranging from pure chains to pure rings, and at densities
around the overlap concentration. In bulk and at rest, we find a shrinking of both
topologies with increasing polymer content of the solution. At the same time, we
observe an increase in the solution viscosity with a concomitant reduction of the
polymer diffusivity. When exposing ring-chain mixtures of any composition to a
pressure-driven flow in a slit channel, we find that ring polymers always migrate
toward the center, whereas chains populate the regions of high local shear close to the channel walls. Interestingly, in a pure
chain solution, this cross-stream migration toward the walls is absent. This phenomenon could be used to iteratively separate
chains and rings at high mass throughput in simple microfluidic devices using pressure-driven flows. Furthermore, we show how
pressure-driven flow can be used as a computationally efficient approach for determining the shear viscosity of (complex)
liquids.

1. INTRODUCTION

In biology, the topology of polymers, as for example, a linear
chain, a circular ring, or a knotted ring, is precisely controlled
and has a direct impact on their properties, e.g., in the case of
DNA1−4 and RNA.5,6 For instance, ring-shaped RNA is less
prone to degradation compared to its linear counterpart.5

Synthesis of polymers of precise topology can open new routes
toward novel functional materials,7 as for example, more
biodegradable plastics.8

Besides being of interest in materials science, there is a
fundamental interest in understanding the impact of topology
on polymeric properties. In the case of ring and linear
polymers, it has been shown that, in equilibrium and under
dilute conditions, the size of ring and linear polymers increases
in the same manner with the degree of polymerization.9 In
contrast, rings shrink more strongly than chains at concen-
trations above the overlap concentration.10 Differences in
dynamic properties become apparent for mixtures of chains
and rings11 and when such mixtures are entangled.12−14

Moreover, when dilute solutions of rings are exposed to an
elongational flow field, they show a unique coupling of the ring
architecture to the flow field, leading to a reduced stretch in
flow direction.15,16 In the melt, ring polymers as pure as
currently producible show a distinctly different response in
rheological experiments compared to their linear analogue,
lacking, for example, a rubber plateau.17

One major challenge in the synthesis of ring polymers is the
production of batches with high topological purity, i.e., samples
that contain solely (nonconcatenated) rings with narrow size
distribution. This is owed to the fact that chemical approaches
fail to distinguish macromolecules by topology, as they consist
of exactly the same number and type of monomers. Due to the

unique coupling of polymer architecture and flow fields,15

microfluidic devices represent a promising route for
topological sieving of molecules af ter the polymers have
been synthesized. This strategy has the advantage that it can be
seamlessly added to existing synthesis recipes and that it allows
for a high throughput.
Microfluidic, nanofluidic, and lab-on-a-chip devices revolu-

tionized the processing of soft matter with high precision. A
high positional control of rigid particles dissolved in a
Newtonian solvent has been first achieved by exploiting
inertia.18−20 When inertia is more important compared to
viscous effects, characterized by a large Reynolds number Re,
time reversibility of the Navier−Stokes equation is broken and
the rigid particles can cross streamlines. In cylindrical channels,
the particles form an annular distribution, due to the
competition of lift forces form the parabolic flow profile,
pushing the particles away from the channel center, and from
the wall-induced asymmetry in the wake vorticity field, driving
the particles away from the walls.21,22 This strategy offers the
advantage that focusing does not enforce the addition of any
focusing agent and can be operated at high throughput. A
drawback of this approach is that the number of focusing
points depends strongly on the channel geometry and the latter
must be tuned precisely to result in a proper 3D focusing.19

Alternatively, 3D focusing of particles can also be achieved by
adding an elastic agent, as for example, polymers, to the
solution.23,24 The so-called viscoelastic focusing operates
typically in a regime where inertia is negligible, but when the
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characteristic time of the added polymer exceeds the time scale
associated with the flow, the Weissenberg number Wi exceeds
unity. It was initially hypothesized that the condition of
negligible inertia restricts the maximum flow velocity, at which
such a device can be operated. However, recent experiments
and simulations have shown that focusing can also be achieved
at high flow strength when inertia becomes relevant again. In
this case, the elastic and inertial forces are balanced, yielding,
e.g., elastic-inertial particle focusing onto a single file in the
center of a square channel.25−27 Additionally, a regime where
inertial effects dominate (Re ≫ 1) in the presence of small
elastic forces (Wi < 1) has been identified as an efficient
focusing regime as well.28 A detailed study in ref 29 highlights
important regimes and underlying mechanisms of focusing,
also examining the effect of shear thinning. When aiming at
focusing deformable particles, such as cells and droplets,
nonmonotonic behavior is reported in the viscoelastic30,31 and
elastic-inertial regime.32

We have recently proposed a microfluidic device with
patterned channel walls for the high-purity filtering of chains
and rings dispersed in Newtonian solvents at ultradilute
conditions.33 To enhance the mass throughput of polymers
and to simplify the design of the microfluidic filter, we propose
here an easy-to-build filtering device for purifying semidilute
mixtures of ring and linear polymers. In our simulations, we
find that ring polymers accumulate in the central region of the
slit channel when exposed to a pressure-driven flow. In
contrast, chains migrate only to the high shear region close to
the walls, when rings are present in the solution. This
phenomenon opens new routes toward the topological
separation of chains and rings. We find that at concentrations
below the overlap concentration, this effect is enhanced by
hydrodynamic interactions (HI), but the effect itself persists as
well at higher concentrations and in the absence of
hydrodynamics. In Section 2, we discuss the employed
simulation methods, followed in Section 3, by the bulk
properties in equilibrium. Thereafter, we focus on the
rheological properties of the polymer solutions in Section 4,
before discussing the migration in microfluidic channels in
detail in Section 5. The impact of hydrodynamics on migration
and polymer conformations is discussed in Section 6.

2. MODEL AND SIMULATION DETAILS

We use a generic bead-spring model for the polymers, where
each polymer consists of M = 50 spherical monomeric units
with diameter a. The advantage of such a model lies in its
transferability to polymers of distinct monomer chemistry,
where a monomer represents a Kuhn segment. The inter- and
intrapolymer excluded volume interaction between monomers
is accounted for by the Weeks−Chandler−Andersen (WCA)
potential,34 describing a polymer dissolved in a good solvent35
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Here, rij denotes the distance between any two monomers i
and j, and ε is the interaction strength. The total number of
polymers in the solution, N = NL + NR, is composed of the
number of linear polymers (chains) NL and circular polymers
(rings) NR, each consisting of M monomers. Connectivity

between monomers of a polymer is achieved through the
finitely extensible nonlinear elastic (FENE) potential36
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In the case of linear polymers, the monomer index i runs from
the first to the (M − 1)th monomer, whereas for rings, it runs
up to theMth monomer, with i + 1 =̂ 1 when i = M to ensure a
closed loop. To avoid any unphysical bond crossing, we used
the standard Kremer−Grest parameters,37 k = 30ε/a2 and R0 =
1.5a. In this work, we consider bulk polymer solutions at rest
and under shear, as well as solutions confined to a slit channel
under pressure-driven flow. In the latter case, two planar walls
confine the polymers in the z direction, as shown in Figure 1a.

The walls are separated by a distance 2Lz, which is on the same
order of magnitude as the size of a polymer coil at rest. To
model the purely repulsive wall potential, we use an integrated
and shifted Lennard-Jones potential
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Since the confinement is only acting in the z direction, the wall
potential solely depends on the z coordinate of the monomers.
Moreover, the parameters aWM and εWM control the wall−
monomer interaction length and its interaction strength,
respectively, both of which have been set to unity.
To take into account HI, we employ the multiparticle

collision (MPC) algorithm.38−40 This approach enables us to
bridge the characteristic time scale associated with a molecular
solvent and the polymers. Hydrodynamics play an important
role in many systems out of equilibrium and/or when complex
boundaries are involved, as for example, in the case of polymer
migration in microfluidic channels.41−43 But even in dilute
solutions at rest, HI have a significant impact on dynamic
quantities, as for example, diffusivities, which can be described
by Zimm dynamics.40,44,45 With increasing monomer concen-
tration, HI are screened and dynamics in a linear polymer melt
can be described by the Rouse model.35,46

The MPC algorithm is based on stochastically interacting
point particles, which undergo consecutive streaming and
collision steps. During the streaming step, the particles are
propagated ballistically

Figure 1. (a) Scheme of a slit channel, confined in gradient (z)
direction with periodic boundary conditions in flow (x) and vorticity
(y) directions. (b) Scheme of the reverse perturbation method with
periodic boundary conditions in flow (x), vorticity (y), and gradient
(z) directions. The highlighted gray layers represent the regions from
which particles are selected for swapping events.
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t t t t tr r v( ) ( ) ( )i i iC C+ Δ = + Δ (4)

where ri is the position of solvent particle i and vi is its velocity.
In the collision step, first, a three-dimensional grid of cell
length aS = a is overlaid on the simulation box. Then, the
center of mass velocity vCoM is calculated within each cell.
Subsequently, the relative velocity of each particle in the cell is
rotated around a randomly oriented axis by a fixed angle α,
described by the operator Ωα

t t t t tv v v v( ) ( ) ( ( ) ( ))i iC CoM CoM+ Δ = + Ω −α (5)

Since this procedure conserves the local energy, momentum,
and mass, the Navier−Stokes equation is fulfilled and HI are
reproduced down to the size of a collision cell.47 Note that the
introduction of collision cells violates Galilean invariance,
when the mean free path of the particles between collisions is
smaller than the cell size. To restore Galilean invariance, a
random grid shift in the interval of [−aS/2, aS/2] is performed
before each collision step in all spatial directions.48,49

Commonly, the thermal energy kBT, the mass of a solvent
particle mS, and the length of a collision cell aS are set to unity,

defining the units of time t m k T a/( )0 S B S= . In this work, we
employ an average number density of solvent particles of ρS =
5aS

−3, a collision time step of ΔtC = 0.1t0, and a rotation angle
of α = 130°, resulting in an analytically calculated dynamic
viscosity η = 3.96 mS/(aSt0) and a kinematic viscosity of ν = η/
ρS = 0.79aS

2/t0.
50,51 This set of parameters reproduces a

liquidlike behavior of the coarse-grained solvent.52 To simulate
a buoyant monomer, we set the monomer mass mM equal to
the average mass of a collision cell filled with solvent particles
only, thus mM = ρSmSaS

3 = 5mS. Pressure-driven flow is achieved
by applying a body force f x = mSgx to all solvent particles in
combination with stick boundary conditions at the channel
walls, which quickly saturates to a steady-state flow profile. To
model stick boundary conditions between the solvent and the
wall, we employ bounce-back rules in combination with virtual
particles.53,54 Applying a body force is equivalent to a pressure-
driven flow in a channel of constant cross section. The pure
MPC solvent behaves as a Newtonian fluid and a parabolic
flow profile develops

u z
u
L

L z( ) ( )x
z

z
max

2
2 2= −

(6)

where umax = f xρSLz
2/2η is the maximum flow velocity in the

channel center z = 0 and Lz is half the channel width.
The temperature is kept constant at kBT = 1 by employing a

cell-level Maxwellian thermostat.55 The coupling of the solvent
to the monomers is achieved through participation of the latter
in the collision step. During the solvent streaming step, 25 MD
steps with time step ΔtMD = 0.004t0 are performed. Bulk
simulations are performed in a cubic box with Lx = Ly = Lz = L
= 30aS, whereas the slit channel has a dimension of Lx = 75aS,
Ly = 2Lz = 25aS, as depicted in Figure 1a.
Shear flow in the bulk solutions is achieved through the

reverse perturbation method,56−58 as shown in Figure 1b.
Here, a shear stress σxz is imposed on the MPC solvent, by first
dividing the simulation box into layers of thickness a along the
gradient direction (z) and then swapping the velocities of
particle i in the layer a = 0 with the largest negative x-velocity
and particle j in the layer a = L/2 with the largest positive
velocity in the x direction. By varying the frequency of
swapping events as well as the number of particles partaking in

it, the momentum flux ⟨Δpx⟩ can be controlled. The shear
stress σxz can then be computed through

p

tL2xz
x

2σ =
⟨Δ ⟩

Δ (7)

Here, Δt is the time interval after which a swapping event
occurs and L is the length of the cubic simulation box. The
shear rate γ̇ can be extracted from the steady-state flow profile.
To elucidate the effect of HI, we have performed additional

Langevin dynamics simulations, in which HI are absent. Here,
the motion of a single monomer i is governed by

m k T tr F r r v r R( ) ( ( )) 2 ( )i i i i iM S Bζ ζ̈ = − ̇ − + (8)

Here, ri̇ represents the time derivative of the position vector ri,
Fi is the conservative force acting on particle i due to the
potentials defined in eqs 1, 2, and 3, vS(r) is the imposed
solvent velocity profile at position r, which is set to zero in
equilibrium, ζ is the friction coefficient, and Ri

α is an
uncorrelated random Gaussian process for each particle i and
Cartesian component α ∈ [x, y, z] with zero mean and
variance one, as indicated below

R t( ) 0i⟨ ⟩ =α
(9)

R t R t t t( ) ( ) ( )i j ijδ δ δ⟨ ′ ⟩ = − ′α β
αβ (10)

Due to the lack of HI, the diffusive motion of the polymer
center of mass is determined as

D
k T

M
B

ζ
=

(11)

following Rouse dynamics. We have verified that our Langevin
simulations reproduce this theoretical description.
We characterized the conformation of the polymers by the

components of the gyration tensor Ĝ

G
M

s s
1

i

M

i i,
1

, ,∑̂ =α β α β
= (12)

where α and β are the Cartesian components ∈[x, y, z] and si
is the position of monomer i in the center of mass reference
frame of the corresponding polymer. The hat indicates
instantaneous values, whereas in the absence of the hat, we
refer to time-averaged quantities. The radius of gyration R̂g can
be calculated via the trace of the gyration tensor Ĝ

R Gtr( )g
̂ = ̂ (13)

We focus in this work on linear and ring polymer solutions
around the overlap concentration c*, which is defined as the
concentration at which the total volume V is pervaded by
polymers35

V
V

R N

V

R
c

4

3

4

3
1P g

3
g
3π π

= = * =
(14)

Equation 14 defines the overlap concentration c* for pure
chains or pure rings employing their radius of gyration at
infinite dilution. In mixtures of chains and rings, the
concentration of rings at c* for any ratio of NL:NR is defined
as follows
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By defining the ratio NL:NR, the number of rings at the overlap
concentration can be calculated according to eq 15. By
multiplying the ring concentration by the ratio NL:NR, one
obtains the chain concentration.
We characterize the flow through the dimensionless

Reynolds number Re and Weissenberg number Wi

Re
uL2 z

ν
=

(16)

Wi τγ= ̇ (17)

In eq 16, u is the characteristic flow velocity, which we
approximate by umax, 2Lz is the channel width, and ν is the
kinematic viscosity. In eq 17, τ is the polymers’ longest
relaxation time and γ̇ is the characteristic shear rate,
approximated by γ̇ ≈ umax/Lz. Note that the kinematic viscosity
ν depends on the concentration c, the composition NL:NR, as
well as the shear rate, since the polymer solutions are shear
thinning. To characterize the elasticity of the solution, we
introduce the elasticity number El

El
Wi
Re

=
(18)

3. EQUILIBRIUM PROPERTIES IN BULK
We have studied mixtures of chain and ring polymers at
various number ratios NL:NR and multiples of the overlap
concentration c*. Table 1 summarizes the equilibrium

properties of chain and ring polymers at infinite dilution and
in the presence of HI, such as the radius of gyration Rg,c→0, the
diffusion coefficient Dc→0, and the relaxation time τc→0. Here,
we have calculated the relaxation time as the time a polymer
takes to diffuse over its diameter 2Rg.
Due to the topological restriction, rings are smaller than

chains. However, rings and chains exhibit the same scaling
behavior with M regarding their overall sizes. For example, the
radius of gyration scales as Rg ∝ (M − 1)νF, with Flory
exponent νF = 3/5 for polymers dissolved in a good solvent at
dilute conditions. The hydrodynamic radius of ring polymers is
smaller as well, thus increasing their diffusivity compared to
their linear counterpart according to the Stokes−Einstein law
in the presence of hydrodynamics. The Rg values indicated in
Table 1 are used to calculate the number concentration of

chain polymers and ring polymers at the overlap concentration
c*. As Rg,c→0 for chains is larger compared to rings, the number
of chains at c* is lower than for rings according to eq 14 in a
pure solution. When looking at mixtures of chains and rings,
we define the ratio of chains to rings via the number ratio of
chains NL to rings NR, as given in eq 15. Hence, for a number
ratio NL:NR = 1:1, a larger volume is occupied by chains than
by rings. Table 2 summarizes NL and NR for all compositions
and concentrations employed. Additionally, the polymer
concentration cP and monomer concentration cM = (NM)/V,
with N the total number of polymers and M the number of
monomers per polymer, as well as the monomer volume
fraction ϕM = πcMaS

3/6 are indicated. We can deduce from this
table that the polymer concentration and thus the monomer
concentration increase strongly with increasing fraction of ring
polymers for a fixed multiple of the overlap concentration.
Figure 2a shows the radius of gyration as a function of the

concentration in a log−log plot. With increasing concentration
c, both polymer types shrink due to steric crowding. Consistent
with previous results,60 shrinking sets in already below c = c*.
Scaling theory predicts that Rg of linear chains will shrink
according to

i
k
jjj

y
{
zzzR R

c
ccg g, 0

( 1/2)/(3 1)F F

≈
*

ν ν

→

− − −

(19)

for concentrations larger than the overlap concentration,35 as
shown experimentally61 and computationally.60 Since this
scaling is only recovered well above the overlap concentration
c* and for sufficiently long chains (see Figure 1 in ref 60), we
do not cover this regime in our work, which is limited to [0.5
− 2.0] c* for a fixed chain length of M = 50. It has been shown
that rings shrink in the semidilute regime with
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zzzR R

c
ccg g, 0

( )/(3 1)F F

≈
*

ν ω ν
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− − −

(20)

with ω = 2/5 for rings of a contour length shorter than the
entanglement length and ω = 1/3 for very long, entangled ring
polymers.10,62 Employing ω = 2/5 results in an overall

exponent of 1/42 / 5
3 1
F

F
− ≈ −ν

ν
−

− , whereas for chains it is

1/81 / 2
3 1

≈ −ν
ν

−
− .10 Qualitatively, we see in the limited data

range available here that rings shrink more strongly compared
to chains with increasing concentration c. However, we have
not yet reached the theoretically predicted scaling behavior,
due to the relatively short chain length (M = 50). The inset in
Figure 2a shows the normalized radius of gyration as a function
of the monomer concentration cM in a log−log representation.
Due to the short chain length in combination with the
excluded volume interaction between monomers, we observe a
decrease of Rg with monomer concentration. For a fixed
multiple of the overlap concentration, the monomer
concentration decreases with increasing degree of polymer-
ization M. Thus, the observed dependence on cM is stemming
from the short chain length. Figure 2b shows the diffusivity of
circular and linear polymers as a function of the monomer
concentration cM as well as the monomer volume fraction ϕM.
As the monomer concentration increases, the diffusivity
decreases, as expected from the concomitant increase in
viscosity (see Section 4). The employed polymer length results
in relatively high monomer volume fractions ϕM and monomer
concentrations cM showing a strong impact on diffusion.63

Table 1. Equilibrium Properties of Single Linear and
Circular Polymers of M = 50 Monomers at Infinite Dilution
and in the Presence of HIa

Rg,c→0 [aS] Dc→0 [aS
2t0
−1] τc→0 [t0]

linear 4.804 ± 0.003 (4.8 ± 0.7) × 10−3 3200 ± 500
ring 3.560 ± 0.002 (5.1 ± 0.9) × 10−3 1700 ± 300

aRg,c→0 denotes the radius of gyration, Dc→0 is the diffusion coefficient
corrected for finite size effects,59 and τc→0 is the longest relaxation
time determined as the time a polymer takes to diffuse over its
diameter 2Rg. The box length is L = 30a0.
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Experimentally, it has been shown that linear and ring polymer
mixtures above the entanglement concentration show an
impact of topology on diffusion.13,14 Given the fact that we

consider polymers of M = 50, we conclude that we are below
the entanglement regime.

4. RHEOLOGICAL PROPERTIES
In this section, we determine the shear viscosity of the polymer
solutions by applying a flow and measuring the resulting
nonequilibrium response. In the case of a Newtonian fluid, the
viscosity η is the proportionality constant between the shear
rate γ̇ and the shear stress σxz. For a non-Newtonian fluid, this
linear relation does not hold anymore. However, one can
introduce an effective viscosity ηeff(γ̇), which is a function of
the shear rate itself. For a power-law fluid, the relationship
between σxz and γ̇ is given by

K K ( )xz
n n 1

effσ γ γ γ η γ γ= ̇ = ̇ ̇ = ̇ ̇−
(21)

where n is the flow behavior index and K is the flow
consistency index. In the case of n = 1, a Newtonian fluid is
recovered and K = η. For n < 1, the solution is shear thinning,
whereas it is shear thickening for n > 1.
In the first approach, we confine the solutions in a slit

channel, apply a body force, and measure the resulting solvent
flow profile, as shown in Figure 3. With increasing monomer
concentration, the flow is more slowed down, indicating an
increase in viscosity. Furthermore, we can identify a distinct
flattening of the velocity profiles which is indicative of the
shear thinning caused by the presence of polymers. The impact
of polymers on the flow profile can be described by the solvent
velocity for a power-law fluid
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In eq 22, ux(z) is the solvent velocity, uW is the slip velocity at
the walls (zero for stick boundary conditions), f x is the body
force applied to solvent particles only, Lz is half of the channel
width, and ρS is the number density of solvent particles.
Furthermore, n and K describe the same parameters as in eq
21. Two distinct body forces f1 = 0.0045mSaSt0

−2 and f 2 = 2f1

Table 2. Number of Chains NL and Rings NR for all Composition Ratios at Various Multiples of the Overlap Concentration c*
in a Cubic Box of L = 30aS

a

NL:NR c NL NR cP [aS
−3] cM [aS

−3] ϕM K n νeff(γ̇1) νeff(γ̇2)

chains 0.5c* 28 0 0.0010 0.05 0.03 3.4(0) 0.88(8) 1.00 0.92
1.0c* 56 0 0.0021 0.10 0.05 3.8(6) 0.88(0) 1.20 1.09
2.0c* 112 0 0.0041 0.21 0.11 4.4(2) 0.83(8) 1.64 1.44

3:1 0.5c* 27 9 0.0013 0.07 0.04 3.4(6) 0.88(1) 1.05 0.96
1.0c* 54 18 0.0027 0.13 0.07 4.0(1) 0.86(9) 1.29 1.16
2.0c* 108 36 0.0053 0.27 0.14 4.6(3) 0.82(0) 1.87 1.61

1:1 0.5c* 21 21 0.0016 0.08 0.04 3.5(5) 0.87(8) 1.09 1.00
1.0c* 42 42 0.0031 0.16 0.08 4.1(5) 0.86(1) 1.38 1.24
2.0c* 84 84 0.0062 0.31 0.16 4.8(2) 0.80(2) 2.15 1.81

1:3 0.5c* 13 39 0.0019 0.10 0.05 3.6(9) 0.87(2) 1.16 1.05
1.0c* 26 78 0.0039 0.19 0.10 4.2(6) 0.87(2) 1.16 1.05
2.0c* 52 136 0.0077 0.39 0.20 4.9(9) 0.76(5) 2.72 2.20

rings 0.5c* 0 72 0.0027 0.13 0.07 3.9(2) 0.86(4) 1.28 1.15
1.0c* 0 144 0.0053 0.27 0.14 4.4(6) 0.81(4) 1.84 1.58
2.0c* 0 288 0.0106 0.53 0.28 5.0(8) 0.72(7) 4.13 3.17

aThe overall concentration of polymers cP and monomers cM is indicated, as well as the volume fraction of monomers ϕM. Flow consistency index,
K, and flow behavior index, n, form fits to a power-law fluid model (see Section 4 for details). Values in parentheses indicate measurement
uncertainty in the last significant digit. Kinematic viscosity νeff in units of aS/t0

2 at two effective shear rates γ̇1 < γ̇2 approximated by umax/Lz.

Figure 2. (a) Radius of gyration Rg normalized by the one in infinite
dilution as a function of the concentration scaled over its overlap
value c* in a log−log plot. The gray dashed line indicates the
prediction of eq 19 with exponent −1/8, and the gray dashed dotted
line indicates the prediction of eq 20 with ω = 2/5 resulting in an
exponent of −1/4. The inset shows the same quantity as a function of
the monomer concentration cM in a log−log plot. (b) Normalized
diffusion coefficient D as a function of the monomer concentration cM
and the monomer volume fraction ϕM. Results for chains and rings are
shown as blue squares and red circles, respectively. The number ratios
are indicated as NL:NR. Distinct hues correspond to distinct
compositions NL:NR. The legend in (b) applies to (a) as well.
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are employed for each set of concentration and composition.
We fit the solvent flow profiles, as exemplarily depicted for a
composition of NL:NR = 1:1 and c = c* in Figure 3, via eq 22
using n, K, and uW as fit parameters and restricting the fit to
[−Lz + Rg; Lz − Rg]. The average of the fitted parameters n and
K for each set of concentration and composition is
subsequently employed to derive an effective shear viscosity
and shear stress via eq 21 using the effective shear rate γ̇eff =
umax/Lz. Dividing the effective shear viscosity, ηeff, by the
solution’s density results in the effective kinematic viscosity νeff.
Here, we take error propagation explicitly into account
emphasizing the consistency of the fits for the two flow
strengths by the small error. The fitting parameters n and K as
well as νeff for the two employed body forces are summarized
in Table 2 and coincide well with literature values.64,65

Applying the same body force to distinct systems does not
yield the same effective shear rate γ̇, as umax varies with
concentration and composition, as well as flow rate.
To verify the reliability of this approach, we performed

additional shear simulations for pure solutions of rings and
chains at c = 0.5c*, c* and 2c* determining n and K via eq 21.
These results are shown in Figure 4a for chains at c = 0.5c* and
in Figure 4b for rings at c = 2.0c*. Shear data are shown in red,
where each dot corresponds to a simulation at a specific shear
rate. The fit obtained by eq 21 is shown as a red line.
Moreover, we employ the fitted parameters in pressure-driven
flow, as indicated in Table 2 and predict the shear stress σxz via
eq 21, shown as a yellow line. To illustrate the employed flow
strengths in pressure-driven flows, the effective shear rate γ̇eff =
umax/Lz and the corresponding shear stress σxz are shown in
Figure 4 as yellow dots calculated via eq 21.
There is an excellent agreement between shear and pressure-

driven flows for all investigated concentrations, exemplary
shown in Figure 4a for a pure solution of chains at c = 0.5c*.
Only for ring polymers at c = 2c*, as depicted in Figure 4b, we
observe a deviation caused by the effect that eq 21 does not
seem to accurately describe the shear data over the whole
regime of shear rates probed. Note that even in this case, the
results from pressure-driven flow agree well with those from
the shear simulations at high shear rates. It is evident that we

can recover with a single simulation of pressure-driven flow,
multiple shear simulations, due to the nonlinear spatial
variation of the flow field. Furthermore, simulations of
pressure-driven flow at two different flow strengths result in
consistent predictions. This result in itself is very promising as
it allows to reduce the computational time for determining the
flow properties of complex liquids. In general, we assume that
three prerequisites are of importance for achieving accurate
measurements: (i) a channel width, which is at least two times
larger than the particle diameter so that the confinement
effects are negligible; (ii) fitting the flow profile in regions
accessible to the solute, i.e., excluding the regions where the
solute is depleted; and (iii) a cross-stream diffusion of the
polymer that is slower than its relaxation so that the particles
have sufficient time to reach their steady-state conformation.

5. CROSS-STREAM MIGRATION IN NANOCHANNELS
When exposed to pressure-driven flows in nanochannels,
mixtures of chain and ring polymers show a surprising cross-
stream migration. We investigate the relative concentration of
chains and rings along the gradient direction, cr(z), at rest and
when exposed to pressure-driven flow. We define cr(z) as the
local concentration c(z), normalized by the average concen-
tration c0. To facilitate the comparison of chains and rings, we
show chain properties for z < 0 and ring properties for z > 0.
Evidently, for all systems but the pure ones, the ring and chain
distributions are present in both parts of the channel. Figure
5a,b shows cr(z) for a solution in equilibrium at (a) c = 0.5c*
and (b) c = 2c*. Since the setup is mirror-symmetric with
respect to the midplane, only half of the profile is shown. Due

Figure 3. Velocity profile of the MPC solvent for the pure solvent in
gray dashed lines, for a composition of NL:NR = 1:1 and c = c* in gray
solid lines. The center of mass velocity of chains (rings) is shown in
blue (red), for only half of the velocity profile. Additionally, a power-
law fluid fit according to eq 22 is shown in yellow determining the
fitting parameters n and K. These parameters lead to the effective
kinematic viscosity νeff = 1.24aS

2/t0 of the solution (see main text)
resulting in a Reynolds number of Re = 14.2 and a Weissenberg
number Wi = 303 (Wi = 158) and an elastic number of El = 21 (El =
11) for chains (rings).

Figure 4. Shear stress σxz as a function of shear rate γ̇ for a pure
solution (a) of chains at c = 0.5c* and (b) of rings at c = 2c*. Red
refers to shear simulations, and yellow to pressure-driven flow
simulations. The dots indicate measured data, while the lines
represent fits according to eqs 21 and 22. Fitting parameters are
indicated in Table 2 for pressure-driven flows, for shear simulations in
(a) K = 3.8 ± 0.1 and n = 0.94 ± 0.003 and in (b) K = 13.5 ± 2.6 and
n = 0.87 ± 0.02.
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to steric hindrance, chains and rings are depleted in the
proximity (≈Rg) of the walls. Chains and rings start to
accumulate after this depletion zone, a phenomenon which is
much more pronounced for rings compared to chains,
congruent with results from density functional theory.66

Since ring polymers consist of the same number of monomers,
but have a smaller radius of gyration compared to chains, the
effective monomer density is higher and they are in this sense
“harder” and more colloid-like. This peak moves closer to the
walls for both chains and rings with increasing monomer
concentration, which can be realized by either an increase of

concentration in units of c* or an increase of ring polymer
fraction at a fixed concentration in units of c*.
Next, we investigate the impact of flow on the relative

concentrations within a channel. To do so, we have chosen two
flow strengths, which we characterize by the Reynolds number
Re, Weissenberg number Wi and elastic number El, as defined
in eqs 16−18. When calculating Wi for chains and rings, we
explicitly take into account the increase of relaxation time with
increasing concentration. Since we find that Wi of rings is
approximately half of the one for chains, we indicate in Figure
6 only Wi and El of the chains. The kinematic viscosity ν
employed in the calculation of the Reynolds number Re is
derived from the effective shear viscosity, as defined in eq 21,
where n and K were obtained by a power-law fit to the solvent
flow profile, as noted in eq 22 and summarized in Table 2
(compare Section 4). The hydrodynamic numbers Re, Wi, and
El depend strongly on concentration and flow strength, but
weakly on composition. Thus, we characterize the flow
strengths employed in Figure 6 using composition-averaged
hydrodynamic numbers. Figure 6a−d shows how the relative
densities of chains and rings are affected by flow. Figure 6a,c
shows the relative densities for c = 0.5c* for a body force of f1 =
0.0045mSaSt0

−2 and f 2 = 2f1, respectively. Figure 6b,d shows the
same quantities for c = 2c*. Independent of concentration and
flow strength, rings accumulate in the channel center, whereas
chains have a higher probability to be close to the channel
walls only in chain-ring mixtures. In a pure solution of chains
(shown in gray for z < 0), linear polymers migrate toward the
channel center as well.
How the local ratio χ(z) between number of chains and

number of rings changes with the distance z from the channel
center is shown in Figure 7 for c = 2c*. First of all, for all
average compositions NL:NR = 3:1 (Figure 7a), NL:NR = 1:1
(Figure 7b), and NL:NR = 1:3 (Figure 7c), the average ratio,
shown as a gray dotted line, is never recovered, even when the
solution is at rest, shown in yellow. Congruent with Figure 5, at
rest, rings accumulate close to the walls and form layers. Thus,
they deplete in the channel center in equilibrium. At the same
time, chains show less tendency to accumulate close to the

Figure 5. Relative concentration of chains and rings at rest versus
distance to the channel center, z, for (a) c = 0.5c* and (b) c = 2c*, at
various number ratios of NL:NR. Due to the symmetry of the setup,
only half of the concentration profile is depicted; chains’ profile is
shown for z < 0, rings’ profile for z > 0. The pure systems, either only
chains or only rings, are shown in gray. Red color corresponds to rings
in topological mixtures, and blue color corresponds to chains.
Monomer concentration and ring polymer content increase with
darkening color.

Figure 6. Relative concentration of polymers chains and rings in pressure-driven flow. (a, c) Systems at c = 0.5c*; flow strength increases from (a)
to (c). (b, d) Systems at c = 2c*; flow strength increases from (b) to (d). The number ratios are indicated as NL:NR. Chains’ profile is shown for z <
0, and rings’ profile is shown for z > 0. Pure chain and ring systems are shown in gray. Red color corresponds to rings in topological mixtures, and
blue color corresponds to chains. The monomer concentration and ring content increase with darkening color.
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walls populating the channel center. Taking these effects
together, the local ratio χ(z) of chains to rings is slightly higher
than the average NL:NR in the center and lower close to the
walls. When exposed to pressure-driven flow, this scenario
reverses. In accordance with Figure 6, chains migrate toward
the walls and deplete in the center, rings vice versa. Thus, the
local ratio χ(z), shown as green lines in Figure 7, is lower than
the average NL:NR in the center, when exposed to flow.
Additionally, we find that cross-stream migration is enhanced
with increasing flow strength. Interestingly, the spatial
separation along the channel cross section of chains and
rings persists for any investigated number ratio of chains and
rings NL:NR. Therefore, this phenomenon can be used to
separate chains and rings continuously by collecting the ring-
enriched solution in the channel center and repeating the
process. In doing so, the ring content will be constantly
increased, representing an easy-to-build, high-throughput
method to separate distinct polymeric topologies.
The increase in ring polymer content in the channel center is

more pronounced at a higher flow strength for a fixed
concentration, which can be correlated with higher Weissen-
berg numbers Wi. Furthermore, when the flow strength is
constant, cross-stream migration of rings is stronger at higher
concentrations, which correlates with lower Reynolds numbers
Re and thus higher elasticity numbers El.
As soon as the Weissenberg number Wi exceeds unity, i.e.,

the inverse shear rate is larger than the longest relaxation time
of a polymer, the polymer starts to deform. Since the shear rate
varies across the channel cross section, being zero in the
channel center and maximum close to the walls, we observe a
deformation of the polymers dependent on the distance to the
center, as shown in Figure 8a−c. Chains and rings start to

elongate in the flow direction, as shown in Figure 8a, and to
shrink in the vorticity and gradient direction, as shown in
Figure 8b,c. The deformation is smallest in the channel center,
where the shear gradient becomes zero. In addition, linear
chains stretch more than rings in the flow direction, while they
shrink stronger in the gradient direction since the chains relax
slower. Further, rings are swollen compared to chains in the
vorticity direction (see Figure 8b), an effect that has been
observed previously.15,67 It originates from solvent particles,
which are reflected at the closed contour of ring polymers,
resulting in a backflow that expands ring polymers in the
vorticity direction. Since this swelling is caused by the rings’
topology, it is absent for chains. Additionally, we see that this
effect gets weaker with increasing concentration, due to the
stronger screening of HI.
Both types of polymers show a concentration dependence

when looking at the elongation in flow direction, as depicted in
Figure 8a. When increasing the concentration, chains and rings
are less deformed, which can be explained by the fact that the
effective shear gradient decreases with increasing concen-
tration, since umax decreases. At the same time, the relaxation
time of polymers increases with concentration, mitigating this

Figure 7. Number ratio χ of chains compared to rings as a function of
the distance to the channel center at c = 2c* for an average
composition of (a) NL:NR = 3:1, (b) NL:NR = 1:1, and (c) NL:NR =
1:3. The yellow lines show the local ratio in equilibrium, while the
green lines correspond to pressure-driven flows with f1 = 0.0045
mSaSt0

−2 and f 2 = 2 f1 = 0.009 mSaSt0
−2; the darker the color, the

stronger the flow. The gray dotted line indicates the average
composition.

Figure 8. Diagonal components of the gyration tensor normalized by
the ones in bulk at infinite dilution versus the distance to the channel
center, for an average composition of NL:NR = 1:1 and 2 f1 = 0.009
mSaSt0

−1. (a) Gxx in flow direction, (b) Gyy in vorticity direction, and
(c) Gzz in gradient direction. Chains are shown in blue squares and z
< 0, rings in red circles and z > 0. With darkening hue, the
concentration increases.
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effect. When calculating the Weissenberg number, both effects
are taken into account, but since the relaxation time of
polymers is derived from equilibrium, it does not take into
account the reduced viscosity at higher shear rates due to shear
thinning. Hence, the relaxation time of polymers is over-
estimated in the calculation of the Weissenberg number,
leading to the apparent contradiction that polymers are less
deformed at higher Wi. Moreover, we note that the shrinking
of chains in the vorticity direction is unaffected by
concentration, as shown in Figure 8b, and the shrinking of
chains and rings in the gradient direction is unaffected as well,
as depicted in Figure 8c. On the one hand, we expect that the
polymers shrink with increasing concentration due to steric
crowding. On the other hand, the maximum flow velocity (and
hence the effective shear rate) decreases with increasing
concentration, resulting in a less pronounced stretching. Here,
we observe that these two effects cancel.
Since we find that the separation efficiency correlates with

Weissenberg number Wi and inertia is non-negligible, one
could explain the cross-stream migration and accumulation of
rings in the channel center by elastic-inertial focusing, as
shown experimentally25,26 and in simulations.27 The elastic
force is based on gradients in normal stresses over the size of
the tracer particle.23 The higher the shear gradient, the higher
the shear stress experienced by the polymers, which can be
seen microscopically by a stronger elongation of polymers in
flow direction (compare Figure 8a). The position-dependent
deformation can be related to position-dependent normal
stress differences N1 = σxx − σzz and N2 = σzz − σyy,

68 leading
to the focusing of tracer particles toward the center. In our
setup, both rings and chains exert elastic forces. Since the
relaxation time of chains is longer than the one of rings, its
elastic force is stronger as well for a given shear rate. Note that
here the elastic agent is not added to the solution, but
intrinsically present owing to the differences in relaxation times
of the two topologies.
In addition to the elastic force, inertia is non-negligible in

our simulations, characterized by Re > 1. When applying the
same flow strength to solutions of distinct concentrations, the
increase in kinematic viscosity with increasing concentration is
responsible for a decreasing Reynolds number, which

correlates with an enhanced focusing as well as higher El.
When increasing the flow strength, we have two competing
effects: Qualitatively, we expect that the gradient of the first
normal stress difference will increase with increasing flow
velocity, as linear polymers are more extended. At the same
time, the focused particles (rings) will shrink in gradient
direction due to their extension in flow direction. It has been
shown that the deformability of the focused particle influences
its cross-stream migration in elastic-inertial flows.32 Addition-
ally, in shear thinning solutions, the Reynolds number is not
anymore directly proportional to the maximum flow velocity,
but influenced by the change in kinematic viscosity, which
itself is a function of the effective shear rate. Thus, increasing
the flow velocity in shear thinning solutions increases the
Reynolds number with umax

2−n, with n being the flow behavior
index.
Inertia enables particles to cross streamlines, leading in the

absence of elastic forces to shear-induced migration away from
the center, as well as a wall-induced lift force toward the center,
stabilizing an off-center position. Consistent with Figure 8b
rings swell in the vorticity direction in flow, as can be seen also
in the simulation snapshots shown in Figure 9d. The backflow
responsible for the extension of ring polymers in the vorticity
direction also enhances the repulsion from the walls. Due to
this backflow, it is unfavorable for rings to extend close to the
channel walls since the former will push them away.
Additionally, we deduce from Figure 9d that, in flow,
theoretically, the only possibility for rings to allocate close to
the walls in a sea of extend chains is to form a two-folded
ribbon, a conformation which is prevented by the afore-
mentioned backflow and thus not observed. In contrast, in
equilibrium, chains and rings form coils close to the walls, as
shown in Figure 9c. The snapshots depicted in Figure 9a,b
show additionally migration of rings from the walls (a) in a
fluid at rest toward the center (b) when exposed to pressure-
driven flow.

Figure 9. Simulation snapshots in the flow gradient (xz) plane at position y = 0 (a) at rest and (b) in flow; walls are indicated by the gray lines.
Simulation snapshots in the flow vorticity (xy) plane at position z = −Lz (c) at rest and (d) in flow; walls are omitted. All snapshots are for an
average composition of NL:NR = 1:1 and c = 0.5c*. To highlight differences, the middle column shows chains and rings, and the same picture is
shown in the left and right columns omitting rings and chains, respectively. Chains are shown in blue, and rings in red.
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6. IMPACT OF HYDRODYNAMICS ON
CROSS-STREAM MIGRATION AND POLYMER
DEFORMATION

In equilibrium, the effect of HI becomes apparent when
investigating dynamic quantities. Under flow, HI manifest
themselves in (i) an additional lift force acting between the
solute and the wall, which increases with increasing flow
strength, apparent by comparing Figure 6a,c; (ii) the impact of
solute on the flow profile, observable in Figure 3; and (iii) the
momentum transfer between monomers, which exemplary can
come into play as backflow, compare Section 5.
To investigate the effect of HI in more detail, we performed

additional Langevin dynamics simulations that neglect hydro-
dynamics (see Section 2 for details) using HOOMD-blue
version v2.2.5.69,70 When coarse-graining the solvent further to
a Langevin description, we need to decide which time scale
should be conserved. As we hypothesize that the cross-stream
migration is linked to the shear-induced polymer deformation,
we decided to preserve the longest relaxation time. In
equilibrium, the solvent velocity profile vS noted in eq 8 is
set to zero and we choose the friction coefficients ζ in the
Langevin simulations to reproduce the diffusion of a single
chain and a single ring at infinite dilution, respectively.
Through adequately chosen friction coefficients ζL and ζR for
chains and rings, we ensured that the deviation in the diffusion
coefficient from our Langevin and MPC simulations is <5%.
To verify whether this agreement holds true at higher
concentration, we reproduced Figure 2 in the absence of
hydrodynamics.
After having established a suitable mapping of MPC (HI) to

Langevin dynamics (no HI) simulations in equilibrium, we
performed Langevin simulations in flow, where we imposed
the unperturbed, parabolic velocity flow profile of a pure
solvent, as depicted in Figure 3. Figure 10a,b shows the
number ratio χ(z) of chains to rings as a function of the
distance to the channel center for c = 0.5c* and c = 2c*,
exemplary for an initial composition of NL:NR = 1:1 indicated
by the gray dotted line. MPC simulations are shown in yellow
(rest) and green (flow), whereas simulations without HI are

shown in gray. In equilibrium, there is no impact of HI, as
expected, resulting in perfect agreement between MPC and
Langevin dynamics simulations. When applying a flow, rings
accumulate in the center, lowering the ratio χ(z) below the
average composition. In particular for low concentrations,
compare Figure 10a, the cross-stream migration is more
pronounced in the presence of HI. With increasing
concentration, compare Figure 10b, those differences are less
pronounced. Generally, HI are more important at lower
concentration and vanish in the melt. Thus, HI enhance
migration, most likely caused by an increased ring-wall lift
force due to the stronger backflow created by the ring
topology. Nevertheless, cross-stream migration persists even in
a concentration regime c > c*, where HI are less important, as
can be deduced by more similar MPC and Langevin simulation
results shown in Figure 10b. Thus, we hypothesize that the
underlying mechanism can be explained by elastic-inertial
focusing. Since this effect is related to a gradient in the first
normal stress difference over the extension of the focused
species, the elastic focusing force is conserved approximately
by mapping the longest relaxation time scale of each topology
when switching from MPC to Langevin simulation. Additional
insights can be gained by carrying out simulations in the
presence of hydrodynamics with rings and chains whose sizes
are chosen in such a way that their relaxation times (at infinite
dilution) are matched. This task is beyond the scope of the
current manuscript, but we plan to systematically study the
effects of polymer length and stiffness in work to follow.

7. CONCLUSIONS
We investigated mixtures of linear and ring polymers at various
concentrations and compositions, in bulk and when confined
to a slit channel. We studied the systems at rest and under
shear or pressure-driven flow. Hydrodynamic interactions were
taken into account through the multiparticle collision
algorithm coupled to molecular dynamics. To investigate the
impact of hydrodynamics, we performed additional Langevin
dynamics simulation without hydrodynamics. In equilibrium,
we find that rings and chains shrink with increasing polymer
concentration. Consistent with previous studies, rings shrink
more compared to their linear counterpart. Since the
investigated solutions are below the entanglement concen-
tration, we do not see any impact of composition on
diffusivities but find that it is purely a function of the
monomer concentration cM. Using shear simulations, we
observe that the viscosity increases as well with monomer
concentration. Hence, the topology-independent decrease in
diffusivity is due to an increase in viscosity. Furthermore, we
established that a single simulation of a polymer solution
exposed to pressure-driven flow can replace several shear
simulations of the same solution, when fitted with a power-law
fluid model. We hypothesize that this approach can be used for
any complex fluid replacing several shear simulations of
distinct shear rates by a single simulation in pressure-driven
flow, which covers intrinsically a continuum of shear rates. For
a successful implementation, three prerequisites should be met:
(i) a channel width being at least 2 times larger than the
diameter of the solute, (ii) restricting the power-law-fluid fit to
regions, which are accessible to the solute, and (iii) a cross-
stream diffusion of solutes, which is slower than their
relaxation.
When confining rings and chains to a slit channel at rest, we

find that rings show a stronger tendency to accumulate close to

Figure 10. Number ratio χ as a function of the distance to the channel
center for an average composition of NL:NR = 1:1 shown by the gray
dotted line. MPC simulations are shown in yellow (rest) and green
(flow), and Langevin simulations are shown in gray. With darkening
color, the flow strength increases.
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the walls compared to chains for all investigated compositions.
When applying a pressure-driven flow, this behavior changes
drastically in mixtures of chains and rings. Here, rings
accumulate in the channel center and chains migrate toward
the walls. In contrast, chains accumulate in the center of the
channel in the absence of rings. We find that cross-stream
migration persists for all compositions, being more pro-
nounced with increasing polymer concentration and flow
strength.
These results open novel routes toward the separation of

mixtures of linear and ring polymers. Since ring polymers
accumulate in the channel center in ring-chain mixtures
exposed to pressure-driven flow, spatially collecting the center
fraction results in a solution with increased ring content.
Repeating the process iteratively allows to purify mixtures of
any initial stoichiometry at high mass throughput.
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(51) Tüzel, E.; Strauss, M.; Ihle, T.; Kroll, D. M. Transport
coefficients for stochastic rotation dynamics in three dimensions. Phys.
Rev. E 2003, 68, No. 036701.

(52) Ripoll, M.; Mussawisade, K.; Winkler, R.; Gompper, G.
Dynamic regimes of fluids simulated by multiparticle-collision
dynamics. Phys. Rev. E 2005, 72, No. 016701.
(53) Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Multi-particle
collision dynamics: Flow around a circular and a square cylinder.
Europhys. Lett. 2001, 56, 319−325.
(54) Götze, I. O.; Noguchi, H.; Gompper, G. Relevance of angular
momentum conservation in mesoscale hydrodynamics simulations.
Phys. Rev. E 2007, 76, No. 046705.
(55) Huang, C. C.; Chatterji, A.; Sutmann, G.; Gompper, G.;
Winkler, R. G. Cell-level canonical sampling by velocity scaling for
multiparticle collision dynamics simulations. J. Comput. Phys. 2010,
229, 168−177.
(56) Müller-Plathe, F. Reversing the perturbation in nonequilibrium
molecular dynamics: An easy way to calculate the shear viscosity of
fluids. Phys. Rev. E 1999, 59, 4894−4898.
(57) Petersen, M. K.; Lechman, J. B.; Plimpton, S. J.; Grest, G. S.;
in’t Veld, P. J.; Schunk, P. R. Mesoscale hydrodynamics via stochastic
rotation dynamics: Comparison with Lennard-Jones fluid. J. Chem.
Phys. 2010, 132, No. 174106.
(58) Statt, A.; Howard, M. P.; Panagiotopoulos, A. Z. Unexpected
secondary flows in reverse nonequilibrium shear flow simulations.
Phys. Rev. Fluids 2019, 4, No. 043905.
(59) Yeh, I. C.; Hummer, G. System-size dependence of diffusion
coefficients and viscosities from molecular dynamics simulations with
periodic boundary conditions. J. Phys. Chem. B 2004, 108, 15873−
15879.
(60) Huang, C. C.; Winkler, R. G.; Sutmann, G.; Gompper, G.
Semidilute polymer solutions at equilibrium and under shear flow.
Macromolecules 2010, 43, 10107−10116.
(61) Daoud, M.; Cotton, J. P.; Farnoux, B.; Jannink, G.; Sarma, G.;
Benoit, H.; Duplessix, C.; Picot, C.; de Gennes, P. G. Solutions of
Flexible Polymers. Neutron Experiments and Interpretation. Macro-
molecules 1975, 8, 804−818.
(62) Sakaue, T. Ring polymers in melts and solutions: Scaling and
crossover. Phys. Rev. Lett. 2011, 106, No. 167802.
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