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ABSTRACT
The growing interest in the dynamical properties of colloidal suspensions, both in equilibrium and under an external drive such as shear or
pressure flow, requires the development of accurate methods to correctly include hydrodynamic effects due to the suspension in a solvent.
In the present work, we generalize Multiparticle Collision Dynamics (MPCD) to be able to deal with soft, polymeric colloids. Our methods
build on the knowledge of the monomer density profile that can be obtained from monomer-resolved simulations without hydrodynamics or
from theoretical arguments. We hereby propose two different approaches. The first one simply extends the MPCD method by including in
the simulations effective monomers with a given density profile, thus neglecting monomer-monomer interactions. The second one considers
the macromolecule as a single penetrable soft colloid (PSC), which is permeated by an inhomogeneous distribution of solvent particles. By
defining an appropriate set of rules to control the collision events between the solvent and the soft colloid, both linear and angular momenta
are exchanged. We apply these methods to the case of linear chains and star polymers for varying monomer lengths and arm number,
respectively, and compare the results for the dynamical properties with those obtained within monomer-resolved simulations. We find that
the effective monomer method works well for linear chains, while the PSC method provides very good results for stars. These methods pave
the way to extend MPCD treatments to complex macromolecular objects such as microgels or dendrimers and to work with soft colloids at
finite concentrations.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5113588., s

I. INTRODUCTION

Thanks to the increased computational capacities and to the
development of better algorithms, computer simulations are nowa-
days well established tools to predict and analyze the properties
of soft matter systems, such as polymer and colloid dispersions.
For these systems, a major challenge is to adequately treat phe-
nomena taking place at different length scales and time scales and
to improve our understanding of how structure and dynamics at
the microscale determine both the functional behavior and per-
formance of the system at the macroscale. For the specific case of

polymer solutions, the characteristic time scales span from the typ-
ical time of molecular motion of the solvent particles (∼10−12 s)
up to the relaxation time of the polymers (10−6–102 s). In addi-
tion, the length scales extend from 1 nm all the way to 1 μm, or
even larger, in the case that supramolecular structures spontaneously
form.

To tackle these problems, we evidently cannot rely on molec-
ular dynamics (MD) simulations which retain all the microscopic
degrees of freedom, but we need to adopt the use of coarse-grained
models. Applying these ideas to suspensions leads to a simplified,
mesoscopic description of the solvent, in which embedded solutes
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are treated by conventional molecular dynamics simulations.1 For
example, as a first approximation, the solvent can be implicitly taken
into account through Brownian dynamics (BD) simulations, which
assume that collisions between solutes and solvent particles lead
to random displacement of the former while thermalizing them.
In a similar fashion, Stokesian Dynamics (SD) considers the rel-
ative motion of the solute with respect to the solvent by intro-
ducing hydrodynamic interactions (HIs) among solute particles,
which can be decomposed into long-range mobility interactions and
short-range lubrication effects.2

More explicit mesoscopic models for the solvent include a
number of discrete algorithms, whose main ingredients are reflected
in local conservation laws (mass, momentum, and energy) at ade-
quate selected scales, which allow to recover the Navier-Stokes
equation in the continuum limit. Among these approaches, one
can find dissipative particle dynamics,3 lattice-Boltzmann method,4

direct simulation Monte Carlo,5 and Multiparticle Collision Dynam-
ics (MPCD).6–8 The MPCD method assumes that the solvent is
composed of noninteracting, pointlike particles, whose dynamics
proceed in two steps: a streaming step and a collision step. In
the former, solvent particles move ballistically, while in the lat-
ter, they exchange linear momentum among themselves and with
solute particles through the use of virtual, cubic cells in which
they are sorted. Although such dynamics is a strongly simplified
representation of real dynamics, it conserves mass, momentum,
and energy, while preserving phase space volume. Consequently,
it retains many of the basic characteristics of classical Newtonian
dynamics.8

MPCD allows us to incorporate in the simulations HI as well as
Brownian fluctuations, both being necessary for a correct descrip-
tion of the characteristic density and thermal fluctuations of soft
matter systems. Thus, a hybrid MD-MPCD method has proven to
be successful for the simulation of the dynamics of colloids, den-
drimers, polymers, vesicles, and red blood cells both in equilibrium
and under flow conditions.9–17

An important point when dealing with colloid and polymer
suspensions is how to couple the suspended particles with the sol-
vent. In the simplest standard method, each colloidal particle or
monomer of a polymer is considered as a pointlike particle which
participates in the momentum exchange during the collision step. In
this situation, it is assumed that only one particle (i.e., monomer or
colloid) is embedded in the cell and that the average total mass of the
solvent particles in the cell is of the same order as that of the parti-
cle.1,7 A more elaborate method takes into account the reflection that
(MPCD) solvent particles undergo when they collide with the sur-
face of a hard solute, which allows us to couple the former with the
latter through the exchange of both linear and angular momentum
during the streaming step.18,19

The computational simplicity of the streaming and collision
steps allows for highly efficient MPCD implementations, which
exploit the massively parallel computational capabilities of graphics
processing units (GPUs).20,21 Despite these advantages, the treat-
ment of semidilute and dense suspensions of polymers with com-
plex architecture, such as dendrimers, micelles, microgels, or star
polymers, still suffers from a number of limitations from the
computational point of view, due to the fact that these objects
are typically composed of a large number of monomers, whose
interactions are described by force-fields that require a large amount

of computational resources. This becomes even more important
as the concentration and/or branching and polymerization degree
increase. Indeed, this requires the inclusion of the necessary number
of (MPCD) solvent particles, making the simulation of large sys-
tems quite demanding. Therefore, despite a number of works on
the topic that include the study of semidilute solutions,11,22–28 the
study of polymer suspensions within this framework has been lim-
ited up to now by the very high computational demand of treating
the polymers in a detailed, monomer-resolved fashion while in par-
allel keeping track of the MPCD-solvent degrees of freedom. In this
respect, a suitable combination of the MPCD efficiency with a sim-
plified model for the polymeric objects could provide a boost to the
understanding of the dynamics and of the rheology of semidilute and
dense suspensions.

Polymer systems are good examples for the application of
a hierarchical coarse-graining procedure: at the first level, the
monomers constituting the polymers can be identified by their cen-
ters of mass only, giving rise to a monomer-resolved description.
Then, the number of degrees of freedom can further be lowered by
considering polymeric chains as composed of several blobs, each
containing a certain number of monomers, which still keep the
main features of the polymer such as size scaling, chain connectiv-
ity, and uncrossability of different chains. Finally, one can go as far
as describing the whole polymer as a single penetrable, soft sphere
centered on the polymer center of mass, which size is of the order of
the polymer radius of gyration.29,30 In the last case, the interaction
between two polymers can be described via soft, effective poten-
tials, which are realized by, for example, micelles, star polymers,
dendrimers, or microgel particles.31–34

In this paper, we propose two new approaches to MD-MPCD
simulations of macromolecular systems suspended in a solvent.
Both methods build on the use of the average (radial) distri-
bution of monomers ρmon(r) around the center-of-mass of the
macromolecule, which embodies its global conformation. The lat-
ter observable can be readily obtained from numerical approaches
in the absence of HI and/or from theoretical arguments. In the
first method, we propose a simple generalization of the MD-MPCD
standard algorithm, where the monomer-resolved model (MRM)
is replaced by a rigid, effective polymer, which is built up fol-
lowing ρmon(r). The interactions between effective monomers are
neglected, and hence, the (diffusive) dynamics of the macromolecule
is determined by the exchange of linear momenta during the col-
lision step between the effective monomers and MPCD solvent
particles, which are homogeneously distributed in the simulation
box. The second method goes one step further by modeling the
macromolecule as a single, spherical penetrable soft colloid (PSC).
In this case, the monomer density profile is employed to deter-
mine the probability of the solvent particles to penetrate inside the
soft colloid. This penetrability condition implies the definition of a
new set of collision rules, different with respect to those for hard
colloids,18,19 which couple PSC and solvent particles through the
exchange of both linear and angular momenta during the collision
step.

We apply both approaches to the case of an isolated linear
polymer chain with varying degree of polymerization and to a
star polymer with different number of arms immersed in a good
solvent. We focus on the long-time dynamics of the center-of-
mass (COM), in particular, its (long-time) diffusion coefficient,
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comparing the results of the two types of MD-MPCD simula-
tions with the monomer-resolved description. We find that the
first method captures quite well the dynamical behavior of a poly-
mer chain, while it does not reproduce well enough the dynam-
ics of star polymers. This result shows that the monomer-solvent
and monomer-monomer coupling need to be taken into account to
describe complex polymeric objects. On the other hand, the penetra-
ble sphere model turns out to be very good to describe the dynamics
of macromolecules with an isotropic density profile such as stars,
while its performance for linear chains, which are instantaneously
more anisotropic, is rather poor. Hence, our work offers insights to
appropriately calibrate the most suitable MD-MPCD method to the
macromolecule of interest.

The rest of the paper is organized as follows: In Sec. II, we
describe the simulation models, i.e., monomer-resolved, effective
monomers and soft-colloid ones as well as the fundamental con-
cepts needed for the present study of polymeric objects. Next, we
describe the two methods and we extensively discuss and test the
collision rules used in the second approach to achieve the coupling
between the solvent and the soft colloid. In Sec. III, we compare the
outcomes of the two MD-MPCD methods with monomer-resolved
ones. Finally, we summarize our findings in Sec. IV and discuss the
perspectives of this work.

II. METHODS
A. Multiparticle collision dynamics

The stochastic rotation dynamics (SRD) version of MPCD
was employed to mesoscopically simulate the solvent, which is
represented as Nsol noninteracting, pointlike particles of mass m,
whose dynamics follows two steps, namely, streaming and collision
steps.1,6,8 In the streaming step, the solvent particles follow a ballistic
motion

ri(t + h) = ri(t) + h vi(t) (i = 1, . . . ,Nsol), (1)

where h denotes the time interval between collisions and ri and vi
represent, respectively, the position and the velocity of the ith sol-
vent particle. During the collision step, the simulation box is divided
into cubic cells of length a (collision cells) and all solvent parti-
cles belonging to the same cell exchange linear momentum. Such an
exchange takes place by rotating the relative velocities of the parti-
cles with respect to the center of mass of the cell by an angle χ around
a random axis.1,8 In this way, after a collision, the velocity of each
solvent particle is updated as

vi(t + h) = vcm(t) + R̂(χ)[vi(t) − vcm(t)], (2)

where R̂(χ) is the corresponding rotation operator and vcm is the
center-of-mass velocity of the cell to which particle i belongs. This is
defined as

vcm =
1
Nc

Nc

∑
j=1

vj, (3)

with Nc being the number of the solvent particles within the cell.
Hydrodynamic interactions are reproduced if both local

momentum conservation and Galilean invariance are guaranteed.
While the first requirement is satisfied immediately by Eq. (2),
for the second one, a random shift of the origin of the cell grid

must be performed before each collision step.35 The average num-
ber of solvent particles per collision cell ⟨Nc⟩, the collision angle
χ, and the MPCD time step h determine the bulk number density
ρsol,bulk = ⟨Nc⟩/a3, the mass density ρ̂sol = m⟨Nc⟩/a3, and the
(dynamic) viscosity of the solvent ηsol = ηkin + ηcol, where

ηkin =
⟨Nc⟩ kBT h

a3 [
5 ⟨Nc⟩

(⟨Nc⟩ − 1)(4 − 2 cos χ − 2 cos(2χ))
−

1
2
]

ηcol =
⟨Nc⟩m
18 a h

(1 − cos χ)(1 −
1
⟨Nc⟩
),

(4)

with kB being the Boltzmann constant and T the absolute tem-
perature, which is set in MPCD by employing a cell-level ther-
mostat.36

It is important to note that in the SRD version of MPCD, the
angular momentum is not conserved, which is essential for correct
hydrodynamic behavior of finite-sized objects with angular degrees
of freedom.1 However, as pointed out by Götze et al.,37 the artifact
due to the nonconservation of angular momentum can be reduced
when dealing with polymers by keeping the local monomer density
low and by taking into account excluded volume interactions among
monomers, as we do in the present study.

B. Monomer-resolved model (MRM) for polymers
Polymers are represented with a bead-spring-like model, where

monomers are treated as soft spheres (ss) of diameter σ and mass
M interacting through a Weeks-Chandler-Andersen-like pair poten-
tial,

Vss(r) =
⎧⎪⎪
⎨
⎪⎪⎩

4ε[( σr )
48
− ( σr )

24 + 1
4 ], r ≤ rcut

0, r > rcut,
(5)

where rcut = 21/24σ, ε = kBT, and r is the center-to-center distance
between the monomers. Bonding between connected monomers
is introduced by means of the finitely extensible nonlinear elastic
(FENE) potential,

Vbond(r) = −
1
2
K(

R0

σ
)

2
ln[1 − (

r
R0
)

2
], (6)

where we fix K = 30ε and R0 = 1.5σ.
We consider kBT and σ as units of energy and length, respec-

tively, whereas the unit of mass is set by the mass m of the MPCD-
solvent particles. In this way, the time evolution of the monomers is
described by Newton’s equations of motion, which are integrated
with the Velocity-Verlet scheme38 using an integration time step
Δt = 10−3τ, with τ =

√
mσ2/(kBT) being the time unit. The cou-

pling between solvent particles and monomers is obtained by sorting
the monomers into the collision cells and including their velocities
in the collision step.7,39 This amounts to rewriting Eq. (3) for the
center-of-mass velocity of the cell as

vcm =
1

mNc + MN(m)c

⎛
⎜
⎝
m

Nc

∑
i=1

vi + M
N(m)c

∑
j=1

Vj

⎞
⎟
⎠

, (7)
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where N(m)c is the number of monomers in the considered collision
cell, Vj is the monomer velocity, and M = ⟨Nc⟩m is the monomer
mass. The velocity Vj of the embedded monomer is updated in the
collision step as

Vj(t + h) = vcm(t) + R̂(χ)[Vj(t) − vcm(t)]. (8)

The remaining MPCD parameters are set as follows: the average
number of solvent particle per cell is ⟨Nc⟩ = 5, the time between col-
lisions is h = 0.1τ, the rotation angle is χ = 130○, and the cell size
a = σ, making the presence of two monomer centers inside the colli-
sion cell unlikely. With this set of parameters, a solvent with viscosity
ηsol = 3.96

√
mkBT/σ4 is obtained.

Molecular dynamics simulations were performed for iso-
lated linear polymers with degree of polymerization Npol = {50,
100, 200} and star polymers with arm number (or functionality)
f = {5, 10, 15, 20} and Npol = 30 in a cubic box of size L = 45σ fea-
turing periodic boundary conditions. Two sets of simulations were
employed: (i) Langevin Dynamics simulations were used to evalu-
ate static properties of the polymers such as the monomer density
profiles around the center of mass ρmon(r), the gyration radius Rgyr,
and the inertia moment I, which were calculated by averaging over
∼105 independent configurations, and (ii) MD-MPCD runs were
performed for each set of parameters to evaluate dynamic prop-
erties. The results were averaged over 14 independent runs where
each run consisted of 104 and 106 MPCD steps for equilibration and
production stages, respectively. The temperature of the system was
controlled by means of a cell-level Maxwell–Boltzmann scaling36

for the solvent particles. During the production run, 4 × 104 con-
figurations were saved to measure the mean square displacement
(MSD) ⟨Δr2

⟩ of the polymer center-of-mass as well as the corre-
sponding (long-time) diffusion coefficient DH and hydrodynamic
radius Rhyd.

C. Effective monomer model (EMM)
In this approach, we consider the average monomer density

profile ρmon(r) calculated via the MRM simulations discussed in
Sec. II B and randomly assign the positions of Neff “effective”
monomers within the simulation box following such distribution.
To this aim, first the simulation box is divided into collision cells,

and then, we put a sphere in the center of the box whose radius
Rcolloid satisfies the condition ρmon(Rcolloid)σ3

< 10−3. Afterward,
for each cell inside such a sphere, whose center is located at a dis-
tance rcell from the center of the box, we extract a uniform random
number R ∈ (0, 1) once and, if R ≤ ρmon(rcell)σ3, we insert a
monomer with mass M and diameter σ in the center of the cell,
as shown in Fig. 1(a). This process is repeated for all the cells
inside the sphere until all effective monomers are placed. Note
that the effective number of monomers corresponds to the num-
ber of successful insertions. We thus obtain a fictitious configura-
tion representing the macromolecule of interest, which is kept fixed
throughout the simulation run. In Fig. 1(b), we illustrate an exam-
ple of effective configuration for a star polymer obtained using the
EMM.

In a first attempt, we have tried to redraw the random posi-
tions of the effective monomers at each collision step, but the sys-
tem showed unrealistic behavior at long times. Therefore, for the
EMM, we rather treat the set of effective monomers as a rigid body
and probe the dynamics by averaging over different rigid configura-
tions. In this way, at each collision step, the velocity of each effective
monomer Vj(t) is equal to that of the COM of the polymeric object
Vcolloid(t) and consequently, the EMM neglects the angular momen-
tum of the polymer. Then, as in the MD-MPCD standard algorithm,
the dynamical coupling between solvent particles and monomers is
described by Eq. (7), yielding the new velocity Vj(t + h) for each
monomer, according to Eq. (8). To calculate the velocity of the COM
of the macromolecule after the collision, we have

Vcolloid(t + h) =
1
Neff

Neff

∑
j
Vj(t + h), (9)

which is used to determine the evolution of the polymeric object
through MD simulations. We repeat this procedure for ten inde-
pendent configurations, whose average gives us an effective macro-
molecule with number of effective monomers Nmon = ⟨Neff⟩.

D. Soft colloid MD-MPCD simulations
In a more coarse-grained model, the polymer chain or star

polymer is described as a single penetrable soft colloid (PSC),

FIG. 1. (a) Schematic representation of
the effective monomer model: in the sim-
ulation box, each square represents a
collision cell used in MPCD simulations.
The blue arrow indicates the case in
which an effective monomer is placed
in the collision cell, while the red arrow
refers to the opposite situation. More
details are explained in the main text.
(b) A representation of star polymer in
the EMM approach, where Rcolloid is
the radius of the sphere enclosing all
monomers.
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which retains some information regarding its average conforma-
tion through the average monomer density profile ρmon(r). In this
case, the coupling between the solvent particles and the PSC is based
on the consideration that monomers exclude solvent particles from
their interior and therefore, the solvent density profile ρsol(r) around
the PSC center-of-mass can be written as

ρsol(r)
ρsol,bulk

= 1 − ηmon(r) = 1 −
π
6
ρmon(r) σ3, (10)

where ρsol,bulk and ηmon(r) denote, respectively, the solvent bulk
density and the (radial) monomer volume fraction. Besides, the
monomer density profile ρmon(r) satisfies the following condition:

4π∫
Rcolloid

0
r2ρmon(r)dr = Nmon, (11)

where Nmon = Npol for linear polymers and Nmon = f Npol for star
polymers, and Rcolloid is a measure of the PSC size.

For a star polymer, ρmon(r) can attain values larger than 6/(πσ3)
close to its center so that ρsol(r) can become negative. To guaran-
tee that 0 ≤ ρsol(r) ≤ ρsol,bulk, the corresponding PSC model is con-
sidered equivalent to a core-shell particle, with a core radius Rcore

defined such as the scaling-law ρmon(r > Rcore) ∼ r−4/3 holds. Rcore
can be thought as the limit of the melt region around the COM
of the star so that no solvent can penetrate inside this region, i.e.,
ρsol(r < Rcore) = 0. According to scaling theory, Rcore ∼ f 1/2σ and the
monomer density at this distance must have the same value for all
stars,29 i.e., ρmon(r < Rcore) = ρcore. As schematically represented in
Fig. 2, once the distribution of the (MPCD) solvent particles around
the macromolecule COM is established, the next step is to introduce

a set of collision rules which govern the dynamical coupling between
the solvent and the PSC.

1. Coupling between solvent and colloids
While standard MPCD is not able to capture the angular

momentum exchange during the collision step, the implementa-
tion of stochastic reflections leading to stick boundary conditions
has successfully allowed the coupling between the solvent and hard
colloids through the exchange of both linear and angular momenta
during the collision step.18,19 In this framework, the ith solvent par-
ticle collides at a point si on the surface of a rigid sphere, which can
be roughly estimated as

si = R(t) +
σhs
2

ri(t) − R(t)
∣ri(t) − R(t)∣

= R(t) +
σhs
2
ên, (12)

where σhs is the diameter of the rigid particle, ên is the unit vector
normal to the collision surface, and ri(t) and R(t) are the position of
the ith solvent particle and the hard-sphere center at time t, respec-
tively. Then, as the solvent particle is scattered after the collision,
both its normal vn and tangential vt relative speeds are randomly
selected from the distributions,19

p(vn) = mβ vn exp(−
1
2
mβ v2

n) (13)

and

p(vt) =

√
mβ
2π

exp(−
1
2
mβv2

t ), (14)

FIG. 2. Influence of the choice of the direction of the normal velocity component ên of the solvent, illustrated on the top panels, after a collision with the PSC on the generated
solvent density profile, reported in the bottom panels. Three different choices of the direction of ên are possible: (a) symmetric rules which give rise to a homogeneous
solvent profile, (b) in-going direction of ên which originates the accumulation of solvent particles around the core of the PSC, and (c) out-going direction of ên yielding the
desired solvent density profile. In all cases, simulations refer to a star polymer with f = 5. The colloidal size Rcolloid and the core radius Rcore are indicated by the vertical black
lines, whereas the horizontal red line represents the solvent density ρsol,bulk in the bulk. In the bottom panels, the solid black line is the solvent profile obtained by the PSC
simulations, while filled symbols indicate the theoretical curve obtained by Eq. (10) in conjunction with Eq. (24).
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with β = (kBT)−1 being the inverse temperature. Thus, linear and
angular momenta are exchanged between the solvent particles and
the rigid particle as

vi(t + h) = V(t) + L(t) × [si − R(t)] + vnên + vt êt , (15)

V(t + h) = V(t) +
m
M
[V − vi(t + h)], (16)

L(t + h) = L(t) +
m
I
[si − R(t)] × [vi(t) − vi(t + h)], (17)

where V(t) and L(t) are the linear and angular velocity of the hard
colloid, respectively, I is its moment of inertia, and êt is the tan-
gential unit vector. Once the collision occurs, the solvent particle is
displaced half the time step from the initial position ri(t) with the
updated velocity vi following Eq. (15).

In contrast to hard colloids, soft ones do not have a well-defined
surface, implying the presence of the solvent well inside its outer
edge. Unlike previous works,18,19 where only solvent-hard particle
collisions were implemented, here we consider a different situation
for the solvent-soft colloid collisions. These are modeled taking into
account two different trial movements, which correspond to pen-
etration or escape of the solvent particles with respect to the soft
colloid. In order to regulate the number of collisions, we use Eq. (10),
aiming to maintain the correct solvent density profile around the
PSC.

To do this, we build on the well-known Metropolis algorithm
and consider a trial displacement of the ith solvent particle from
ri(t) to ri(t + h). We define the probability Pold→new for a solvent
particle to go from the old position rold = |ri(t)| to the new one
rnew = |ri(t + h)|, as

P old→new =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min{1,
ρsol(rold)

ρsol(rnew)
}, rnew < rold,

min{1,
ρsol(rnew)

ρsol(rold)
}, rold < rnew.

(18)

Then, the trial move is accepted if Pold→new is larger than a
random number R ∈ (0, 1), and hence, the solvent particle
propagates ballistically. On the other hand, if the trial move is
rejected, a “solvent-PSC collision” takes place. In this case, the sol-
vent particle is reflected using an “effective hard-sphere radius”
Rcollision that defines an “effective impact point” via Eq. (12).

Both linear and angular momenta are exchanged during this
event.

In order to reproduce the appropriate dynamics of a PSC, we
need to control the distribution of solvent around it which is physi-
cally prescribed by Eq. (10). This is achieved by adjusting the num-
ber of penetrating and escaping collisions in each step. To this end,
the definition of transition probability shown in Eq. (18) must be
complemented by an appropriate choice of a privileged direction
for the normal solvent velocity component ên once the collision
has occurred. In this way, we are able to adequately regulate the
distribution of the solvent in the system.

In Fig. 2, we show how the density profile of the solvent is
affected by the choice of the direction of ên in the cases where a colli-
sion happens during penetration and escape events. A general case is
considered where the velocity direction ên points outward for pen-
etration and pointing inward for the escape events. In this way, we
always reproduce a realistic rebound of the solvent particles, which
provides a homogeneous solvent profile, as shown in Fig. 2(a). These
conditions satisfy detailed balance since the transition probabilities
described in Eq. (18) are symmetric. To break this symmetry and
hence to reproduce an inhomogeneous density profile, we have to
choose the same direction of ên for both events. Thus, if we always
consider ên pointing inward, we enforce a penetration to the inside
of the solvent particles, as represented in Fig. 2(b), where an accu-
mulation of solvent is detected around the core. On the other hand,
if we consider the opposite case, where ên always points outward, an
escape to the outside is guaranteed. Thus, we always consider the last
set of rules with outgoing ên, which guarantees us a correct assess-
ment of the solvent density profile within the PSC, as we show in
Fig. 2(c).

To summarize this section, here we report the complete set of
collision rules controlling the solvent-PSC coupling in our simula-
tions, which are illustrated in Fig. 3:

● Case 1. From the bulk to the PSC shell (rold > Rcolloid > rnew
> Rcore): if the move is rejected, then a collision takes place at
Rcollision = Rcolloid;

● Case 2. From the outer PSC shell to the inner PSC shell
(Rcolloid > rold > rnew > Rcore): if the move is rejected, then
a collision takes place at Rcollision = (rnew + rold)/2;

● Case 3. From the star corona PSC shell to the core
(Rcolloid > rold > Rcore > rnew): the move is rejected, then a
collision takes place at Rcollision = Rcore;

FIG. 3. Schematic representation of the density profiles of monomer ρmon(r) and solvent ρsol(r) particles and the adopted collision rules for a generic soft penetrable colloid
with a core radius Rcore and a total radius Rcolloid. The red point represents a solvent particle, whereas rold and rnew are the positions at time t and t + h, respectively. For case
1 and case 4, the solvent particle collides on the surface of the soft colloid; for case 2 and case 5, the collision takes place inside the colloid, with the effective collision radius
being Rcollision < Rcolloid. Finally, case 3 illustrates the collision with the core, and hence, Rcollision = Rcore.
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● Case 4. From the inner PSC shell to the outer PSC shell
(Rcolloid > rnew > rold > Rcore): if the move is rejected, then
a collision takes place at Rcollision = (rnew + rold)/2;

● Case 5. From the PSC shell to the bulk (rnew > Rcolloid > rold
> Rcore): if the move is rejected, then a collision takes place at
Rcollision = (rnew + rold)/2.

Note that for the case of a linear polymer, Rcore = 0, and there-
fore, case 3 is not considered. In all cases where the collision occurs,
linear and angular momentum exchanges take place according to
Eqs. (15)–(17). In this case, the position of the solvent particles after
the collision will not be described by the ballistic motion represented
in Eq. (1), but rather by

ri(t + h) = ri(t) +
h
2
vi(t + h). (19)

On the other hand, during the displacement of the soft col-
loid, it is possible that solvent particles remain inside the core. To
avoid this, before applying the collision step, we displace the solvent
particle by means of

ri(t) = R(t) + Rλ + Rcore, (20)

where λ is the mean free path of a solvent particle, defined as
λ ∼ h

√
T.

III. RESULTS
A. Monomer and solvent density profiles

First, we report results for the monomer density profiles for lin-
ear and star polymers, obtained from the monomer-resolved simula-
tions, which are shown in Figs. 4 and 5. These are the key observables
that are needed to implement our MD-MPCD framework for soft
colloids, and it is important to provide an analytic description for
them, which can then be employed in the PSC model. To this end,
we fit them using a combination of appropriate functions that are

FIG. 4. Monomer density profile ρmon(r) around the center of mass of a linear poly-
mer. Fits are performed with Eq. (22). Inset: Corresponding monomer probability
density distribution. Only the fitting curve according to Eq. (21) for Npol = 50 is
shown.

FIG. 5. Monomer density profile around the center of a star polymer of different
functionality f is calculated from simulations (symbols) and compared to fits (lines)
based on Eq. (24) for r > Rcore. Vertical lines identify the radius of the core, Rcore,
for each value of f. Inset: Rcore as a function of f 1/2 for ρcoreσ3 = 0.2.

based on known properties of polymers with excluded volume inter-
actions immersed in a good solvent, and which take into account the
normalization condition in Eq. (11).

For linear chains, we consider that

ρ(chain)
mon (r) =

Npol

R3
gyr
⋅
P(r/Rgyr)

4π(r/Rgyr)
2 , (21)

where Rgyr is the polymer radius of gyration (see the Appendix) and
P(x) is the probability distribution to find one monomer of the poly-
mer chain to be located at a scaled distance x = r/Rgyr from its center
of mass. Following the analysis of the end-to-end distribution length
for a chain with excluded-volume,40,41 we consider the probability
distribution to be given by the following expression:

P(x) = a0 xa1 exp[−(
x
a2
)
a3

] fb(x, xb)

+ a4 [1 − fb(x, xb)] exp[−(
x
a5
)

2
]. (22)

Here, the bridge function

fb(x, xb) = exp[−(
x
xb
)

4
] (23)

has been chosen to take into account both the short- and the long-
distance behavior of P(x). The set of parameters {ai, xb} (i = 0, . . ., 5)
is then obtained from a nonlinear fitting procedure and is reported
in Table I.

TABLE I. Fit parameters to Eq. (22) for different polymerization degrees of linear
chains.

Npol a0 a1 a2 a3 a4 a5 xb

50 3.0806 2.1109 0.8562 2.4880 5.1575 1.0177 1.5508
100 3.2537 2.1225 0.8512 2.3594 3.6011 1.0659 1.4585
200 3.5738 2.1377 0.8210 2.1591 3.0437 1.0940 1.4360
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On the other hand, Fig. 5 displays the monomer density pro-
files obtained for star polymers, for which the fitting procedure is
performed as follows. According to the Daoud-Cotton model, the
monomer concentration around the center of the star scales as r−4/3

at intermediate distances (swollen regime).29 Beyond this scaling
regime, there always exists a diffuse layer of polymer which we
consider to follow Gaussian decay.42 Under these assumptions, the
monomer density profiles obtained from the MRM simulations are
fitted to the expression

ρ(star)
mon (r) =

f Npol

R3
gyr

⎛

⎝
A1 x−4/3 fb(x, xb)

+A2[1 − fb(x, xb)] exp[−(
x − x1

x2
)

2
]
⎞

⎠
, (24)

with x = r/Rgyr and fb(x, xb) being the bridge function defined in
Eq. (23).

We evaluate the set of parameters {Ai, xi, xb} (i = 1, 2) by fitting
only the region Rmin < r < Rcolloid, where Rcolloid is defined from the
condition ρ(star)

mon (r > Rmax)σ3
< 10−3, while Rmin is chosen to discard

the profile oscillations close to the star center that are indicative of
the core region. Once the parameters defining Eq. (24) are obtained
for a particular value of f, we impose that the density inside the
core is the same for all other stars. This condition satisfies the scal-
ing theory, which, as mentioned above, implies that Rcore ∼ f 1/2σ,
as shown in the inset in Fig. 5. We thus extend the fitting curve
[Eq. (24)] also for Rcore < r < Rmin and set it to zero for r < Rcore. In the
present study, we consider ρcoreσ3 = 0.2, while we present a discus-
sion on the influence of the core size on the dynamical behavior in
Sec. III D. The final fit parameters used for ρ(star)mon (r) are reported in
Table II.

Using the monomer density profiles as input, we must check
that the solvent density profiles obtained with the MPCD-PSC
approach are the same as expected. This is illustrated in Fig. 6(a)
for linear chains and in Fig. 6(b) for star polymers. We find that, for
all studied cases, ρsol(r) are well reproduced by the PSC description.
Only we notice that, for star polymers, small deviations appear at
large distances with respect to the theoretical predictions of Eq. (10)
that are more evident for increasing f. These are due to finite size
effects since our simulation box is fixed, while the size of the colloid
increases with f.

B. Results for linear chains
In the Appendix, the corresponding average size, mass, and

moment of inertia for both linear and star polymers are pre-
sented. Using these quantities along with the fitted monomer density

TABLE II. Fit parameters to Eq. (24) for star polymers with different functionality f.

f A1 A2 x1 x2 xb

5 0.0810 0.7975 0.0540 0.4087 1.4276
10 0.0785 0.7400 0.0003 0.5815 1.4054
15 0.7742 0.7342 0.0184 0.6193 1.3845
20 0.0763 0.6350 0.0307 0.6607 1.3380

FIG. 6. Solvent density profile ρsol(r) obtained by PSC simulations for (a) linear
chains and (b) star polymers. For the linear chains, solid lines correspond to the
results obtained by Eq. (21), whereas for the star polymers, Eqs. (10) and (24)
were used.

profiles, it is now possible to compare the mean-square displacement
and the long-time diffusivity obtained from the two methods for
MPCD of soft colloids with those calculated with monomer-resolved
model (MRM) simulations. Here, we stress that for all three meth-
ods, the properties of the MPCD solvent are identical, i.e., same m,
⟨Nc⟩, h, a, and χ. We start by reporting results for linear polymers.

The mean square displacement (MSD) of the polymer center of
mass (COM) was evaluated for both types of simulations as

⟨Δr2
⟩ = ⟨[Rcom(t) − Rcom(0)]2⟩, (25)

where Rcom(t) is the position of the polymer center-of-mass. The
MSD for linear chains is reported in Fig. 7 for the effective monomer
model and for the PSC model at all studied values of the degree of
polymerization. They are compared with the results of MRM simu-
lations. We can clearly see how the effective monomer description is
able to reproduce well the MSD obtained by MRM at all times, while
the PSC model is found to always overestimate the diffusion for all
values of Npol.

Following Einstein’s relation, at sufficiently long times, the
MSD curves reach a diffusive regime, from which we can com-
pute the finite-size diffusion coefficient DH

L ∼ ⟨Δr2
⟩/6 t, where L

denotes the size of the simulation box. The corresponding results
are reported in Fig. 8(a) for chains as a function of degree of
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FIG. 7. Mean-square displacement for linear chains. Results obtained with the
MRM are compared with (a) the effective monomer model (EMM) and (b) the PSC
model.

polymerization, again comparing the results from the three sets of
simulations. There, D0 =

√
kBTσ2/m defines the unit of the dif-

fusion coefficient. Once the finite-system-size diffusion coefficient
is known, the hydrodynamic radius Rhyd of the soft colloid can
be evaluated by inverting the following relationship, as shown by
Singh et al.:44

DH
L =

kBT
6π ηsol Rhyd

⎡
⎢
⎢
⎢
⎢
⎣

1 −
Rhyd

L
⎛

⎝
2.837 −

4π
3

R2
hyd

L2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (26)

The obtained values of Rhyd using this method are reported in
Fig. 8(b). With these values, we can finally calculate the infinite-
system-size diffusion coefficients DH from the Stokes-Einstein rela-
tionship as

DH
=

kBT
6π ηsol Rhyd

. (27)

The corresponding results for DH are reported in Fig. 8(c).
As expected, we find that chains slow down with increas-

ing Npol for all employed simulation methods. However, while the
effective monomer simulations seem to reproduce quite well the
behavior of the MRM ones for DH

L and consequently also for Rhyd

and DH , the PSC simulations show quantitative deviations. In par-
ticular, both diffusion coefficients are significantly overestimated.
This results in a smaller value of Rhyd, as shown in Fig. 8(b). This

FIG. 8. Results for linear chains as a function of Npol. (a) Finite-system size
DH

L diffusion coefficient, (b) hydrodynamic radius computed by Eq. (26), and (c)
infinite-system-size DH diffusion coefficient. (d) Relationship between the radius of
gyration Rgyr and the hydrodynamic radius Rhyd. The Zimm predictions and exper-
imental values are taken from Ref. 43 and refer to linear chains in good solvent
conditions.

quantitative discrepancy may be due to the fact that we assume a
spherically symmetric monomer distribution in the model, which is
not very accurate for linear chains. Indeed, the instantaneous config-
urations of linear polymer chains are much more akin to ellipsoids
with three very dissimilar semiaxes, a feature that has been recently
exploited to investigate polymer anisotropy effects of the depletion
potential they induce on nonadsorbing colloidal particles.45 In addi-
tion, by fixing a spherical-symmetry, we consider that any part of the
linear chain can be found simultaneously at any point at a distance r
from the center of mass. This assumption is far away from the situa-
tion observed in the MRM. Since the PSC model underestimates the
effect that collisions have on rotational diffusion (transfer of angular
momentum), it results in a larger transfer of linear momentum to the
soft colloid, and concomitantly, to a higher value of DH

L . Notwith-
standing this, we notice the same trend upon increasing Npol with
respect to the MRM simulations, which suggests that the method at
least works on the qualitative level.

In Fig. 8(d), we report the ratio Rgyr/Rhyd using the data from
MRM simulations and effective monomer model and we compare
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our findings to the theoretical value predicted by the Zimm model
and to available experimental data in good solvent conditions.43 We
observe a similar behavior for both models, with a larger deviation
from the expected values for short chains. On the hand, the long
chains are seen to be quite close to the theoretical and experimental
values.

C. Results for star polymers
We report the MSD of the star polymer centers of mass in

Fig. 9 for the effective monomer model (a) and for the PSC model
(b) at all studied values of the functionality. The results are com-
pared with those obtained from MRM simulations. We find that the
dynamics of the stars in the MRM is more complex than that of the
two coarse-grained models, showing clear deviations at short time
scales due to the additional monomeric degrees of freedom, that are
absent in both EMM and PSC descriptions. However, at sufficiently
long times, when the MRM reaches the diffusive regime, the results
become comparable to the coarse-grained approaches. We find that,
oppositely to the case of linear chains, the MSD obtained with the
PSC model agrees rather well with the MRM description, while the
effective monomer model is found to underestimate diffusion for all
values of f.

From the long-time diffusive regime, we obtain DH
L , Rhyd

and DH for stars, which are reported in Fig. 10. As anticipated
from the behavior of the MSD, we now find an opposite behav-
ior of the coarse-grained models with respect to the linear chain

FIG. 9. Mean-squared displacements for star polymers. Results obtained with
MRM are compared with (a) the effective monomer model and (b) the PSC model.

FIG. 10. Results for star polymers as a function of f. (a) Finite-system size DH
L

diffusion coefficient, (b) hydrodynamic radius calculated via Eq. (26), and (c)
infinite-system-size DH diffusion coefficient. (d) Relationship between the radius
of gyration Rgyr and the hydrodynamic radius Rhyd. The Zimm predictions in θ sol-
vent conditions are taken from Ref. 43, whereas experimental values are taken
from Ref. 46 and refer to star polymers in good solvent conditions.

simulations. Indeed, for stars, we have that the PSC model repro-
duces quite well the (long-time) trends observed in the MRM sim-
ulations with an almost quantitative agreement, while the effective
monomer model yields less satisfactory results. This discrepancy
may be due to the fact that we neglect monomer-monomer corre-
lations in the EMM, which are relevant in the case of topologically
complex macromolecules such as stars. Instead, the PSC model is
found to work well because, contrarily to the case of linear chains,
the approximation of a spherical density profile for star polymers is
a more realistic assumption. This is particularly true for increasing
f, in which case fluctuations around the spherical density profile are
reduced, and hence, it is expected that in the limit of f →∞, the PSC
should get closer and closer to the MRM results.

As for the case of linear chains, we also report the ratioRgyr/Rhyd
using the data from MRM simulations and effective monomer model
in Fig. 10(d). The data are compared to the Zimm theory for θ sol-
vent conditions,43 as well as to experimental results for low-arm
stars in good solvent.46 We find a good agreement between the
values obtained with both types of simulations and those found in
the literature.
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FIG. 11. (a) Monomer density profile around the center of a star polymer with
f = 5. Symbols represent data obtained by MRM simulations, whereas solid lines
indicate fits by Eq. (24). (b) Finite-system sizeDH

L diffusion coefficient as a function
of f for two values of ρcore.

D. Effects of core on the dynamics of the penetrable
soft colloid model for star polymers

We finally describe the influence of the core size on the
dynamics of the penetrable soft colloid model. Starting from the
fits already discussed in Sec. III A, we now consider the effect of
extending the validity of the functional form given by Eq. (24) into
the region where oscillations of the density profile are observed.
This is illustrated in Fig. 11(a), where we consider stars with
ρcoreσ3 = 0.43 amounting to a smaller value of Rcore with respect
to the case previously considered in Fig. 5 (where ρcoreσ3 = 0.20).
Having chosen this value of ρcore, we then impose that the core
density has the correct scaling with respect to the number of arms
(∼f 1/2).

In Fig. 11(b), we thus compare the values of the finite-system
size DH

L diffusion coefficient for both values of ρcore. We find, as
expected, that a decrease in the core radius speeds up the diffusion of
the soft colloid. Both sets of data display a similar trend with increas-
ing f, suggesting that, while an optimal choice of Rcore is needed
for a correct description of the hydrodynamic interactions in our
MPCD PSC simulations, its exact value does not qualitatively affect
the results.

IV. SUMMARY AND CONCLUDING REMARKS
With respect to previous works where hydrodynamic interac-

tions of hard sphere particles have been studied using MD-MPCD

simulations, in this paper, we treat the case of penetrable soft col-
loids, focusing on linear and star polymers. To this aim, we com-
plement simulations where the polymeric object is treated with a
monomer-resolved model, with two novel approaches.

In the first one, we reproduce the structure of the linear chains
and star polymers by placing monomers at random in the simulation
box using the average monomer density profile and considering this
set of monomers as a rigid body. Thus, monomer-monomer inter-
actions are neglected and the dynamics of the polymeric objects are
only controlled by the MPCD collision step. On the other hand, in
the second model, we adopt a coarse-grained strategy where we use
the average monomer density profile of the particle to define it as
a penetrable soft colloid surrounded by an inhomogeneously dis-
tributed solvent. To capture the hydrodynamic interactions of the
penetrable soft colloid, we build on a previous model for MPCD of
hard colloids to couple the dynamics of solvent to that of the soft
colloid. Differently from the standard MD-MPCD approach where
only an exchange of linear momentum is considered, we now need
to control the distribution of solvent with respect to the penetrable
sphere. Assuming the form of the solvent density profile, we define
the probability rules of the solvent particle displacements. Thus, in
all cases where a solvent particle cannot displace, it collides with an
inner layer/with the shell of the colloid exchanging both linear and
angular momenta.

We find that the hydrodynamic interactions of linear chains
are well captured by a fictitious rigid topology, while the approxi-
mation of a spherically symmetric monomer distribution in the PSC
approach provides an unsatisfactory description of the data. How-
ever, in the case of star polymers, we have the reverse situation: the
PSC model with a radial monomer distribution works well, while
the representation of the structure by effective monomers does not
reproduce the long-time hydrodynamic behavior. This result indi-
cates that macromolecules with a complex internal structure exhibit
a more sophisticated solvent-monomer dynamics coupling and that
monomer-monomer interactions need to be included at some level
in the coarse-grained description. In this respect, the newly defined
collision rules which provide the correct inhomogeneous density
profile for solvent particles inside the colloid are able to realistically
represent the flow of solvent particles from the interior of the PSC
to the bulk and hence by the exchange of both linear and angular
momenta, to correctly reproduce hydrodynamic interactions. In the
case of star polymers, we also find that the definition of the core size
can be further tuned to determine the correct long-time dynamics of
the penetrable soft colloid.

It is now important to comment on the computational effi-
ciency of the new methods that we have proposed. To this aim,
we perform the simulation of 1000 time steps for a star with
f = 20 with all three approaches on a 2.9 GHz i5 processor. For the
MRM, such simulation required 5 min. On the other hand, for the
effective monomer approach, it was completed in 3.3 min, while the
PSC description needed 4 min. Hence, both approaches are found
to be more efficient than the MRM. This confirms that the numeri-
cal techniques that we have introduced in this work could be a first
step to investigate the hydrodynamics of complex macromolecules
that cannot be attained with MRM simulations. Our intention is
to apply this approach to the study of other polymeric systems,
such as microgels,47,48 for which accurate monomer density profiles
have recently been calculated at different solvophobic conditions.49
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Furthermore, this method opens up the possibility to go beyond
single-particle studies and to address the dynamics of polymeric
objects at finite concentrations. One straightforward extension
would be to study star polymers with a large number of arms
and to address their phase behavior. In this case, two such PSCs
would interact by well-established effective star polymer interac-
tions,31 while solvent particles would collide with the soft spheres
as described in this work to correctly capture hydrodynamic inter-
actions. Finally, it would be interesting to apply the PSC description
to the sedimentation of ultrasoft colloids50 or star polymers under
shear flow,51 where external forces deform the monomeric density
profile.
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APPENDIX: RADIUS OF GYRATION AND INERTIA
MOMENT

Here, we report results for observables that quantify the poly-
mer conformation, calculated with MRM, that are useful to compare
with the PSC simulations. In particular, we focus on the radius of
gyration

Rgyr = ⟨
1

Nmon

Nmon

∑
i=1
(ri − Rcom)

2
⟩

1/2

(A1)

and on the inertia moment around the center of mass

TABLE III. Average sizes and inertia moments of linear polymers. Rcolloid is chosen
such as P(Rcolloid/Rgyr) ≤ 10−5 (see Fig. 4).

Npol Rgyr/σ Rcolloid/Rgyr I0/(104mσ2) ⟨Iμμ⟩/I0 ⟨Iμν⟩/I0

050 5.25 3.32 0.4507 0.9352 −0.000 55
100 8.00 3.50 2.1280 0.9224 −0.003 02
200 11.70 3.61 9.1103 0.9991 −0.008 20

TABLE IV. Average sizes and inertia moments of star polymers. Rcolloid is chosen
such as ρmon(r > Rcolloid) ≤ 10−3 (see Fig. 5).

f Npol Rgyr/σ Rcolloid/Rgyr I0/(104mσ2) ⟨Iμμ⟩/I0 ⟨Iμν⟩/I0

5 30 6.82 2.68 2.3257 1.0145 −0.001 34
10 30 7.66 2.50 5.8675 1.0048 −0.004 46
15 30 8.18 2.45 10.036 1.0042 0.004 13
20 30 8.59 2.37 14.758 1.0027 −0.000 23

FIG. 12. (a.1) Radius of gyration Rgyr and (a.2) inertia moment I for linear polymers
as a function of Npol. (b.1) Radius of gyration Rgyr and (b.2) inertia moment I for star
polymers as a function of f. Numerical results are obtained from MD simulations
combined with implicit (LAN) and explicit (MPCD) solvents.

Izz = ⟨M
Nmon

∑
i=1
(x2

i + y2
i )⟩. (A2)

The average values of Rgyr and I = ⟨Iμμ⟩ = (Ixx + Iyy + Izz)/3 for linear
and star polymers are reported in Tables III and IV, respectively. We
also estimate the “colloidal” radius of each macromolecule, named
Rcolloid, as the largest average distance from the COM at which a
monomer can be found; it can thus be considered as the size of
the penetrable soft colloid model describing the polymer. For the
inertia moment, data are normalized by I0 =

2
3McolloidR2

gyr with
Mcolloid = M Nmon, which corresponds to the inertia moment of
a uniform sphere of mass Mcolloid and radius R =

√
5/3Rgyr, i.e.,

both the polymer and the uniform sphere are considered to have
the same mass and gyration radius and therefore the same inertia
moment. Figure 12 shows that Rgyr and ⟨Iμμ⟩ follow the expected
scaling laws with respect to the polymerization degree for linear
polymers.

Similarly, Fig. 12 reports the same quantities for star polymers,
showing that they follow the expected scaling laws with respect to
the functionality. In both cases, simulations performed with implicit
(MD+Langevin) and with explicit (MD+MPCD) solvents yield the
same results.
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