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ABSTRACT: The structural properties of a system of ionic microgels under
the influence of an alternating electric field are investigated both theoretically
and experimentally. This combined investigation aims to shed light on the
structural transitions that can be induced by changing either the driving
frequency or the strength of the applied field, which range from string-like
formation along the field to crystal-like structures across the orthogonal plane.
In order to highlight the physical mechanisms responsible for the observed
particle self-assembly, we develop a coarse-grained description, in which
effective interactions among the charged microgels are induced by both
equilibrium ionic distributions and their time-averaged hydrodynamic
responses to the applied field. These contributions are modeled by the
buildup of an effective dipole moment at the microgels backbones, which is
partially screened by their ionic double layer. We show that this description is
able to capture the structural properties of this system, allowing for very good
agreement with the experimental results. The model coarse-graining parameters are indirectly obtained via the measured
pair distribution functions and then further assigned with a clear physical interpretation, allowing us to highlight the main
physical mechanisms accounting for the observed self-assembly behavior.
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Soft nanoparticles are known to act as prototypical
building blocks for the manufacturing of smart
responsive materials with controllable features.1−5

There are many different approaches to experimentally trigger
the self-assembly of these nanoparticles, in such a way as to
target desirable macroscopic structures with tunable proper-
ties.6,7 The general strategies usually go along the lines of
controlling effective interactions by adjusting the synthesis
mechanisms and/or the properties of the environment the
particles are embedded into, in such a way as to manipulate
their dynamical and structural equilibrium assemblies. In this
respect, biological systems provide excellent templates to
nanoparticle self-assembly both in bulk8−15 and in interfa-
cial14,16,17 environments. In this case, however, the interactions
and physical mechanisms responsible for particle aggregation
are generally quite complex and difficult to reproduce.8 In
practical applications, on the other hand, it is usually desirable
to design simple systems which are yet able to assemble into
complex structures in a controllable way.

Several inherent properties of nanoparticles such as their size,
shape, charge, and degree of polydispersity can be reasonably
well controlled during the synthesis mechanisms to render
particles a rich variety of interactions and self-assembly
properties.7,18,19 Decorating nanoparticles with asymmetric
patches,20−26 coating them with different objects,27−29 or
grafting polymer chains along their surfaces30−33 are among the
usual synthesis protocols adopted to achieve desirable particle
effective interactions in the case of hard surfaces.3,34 In soft
nanoparticles, the degree of softness and the size/shape
deformations under external stress are essential features to
control their equilibrium properties with the environment.35−40

Solvent properties such as pH, permittivity, and solvent quality
can also have a strong influence on the way suspended
nanoparticles interact with one another.41−46 Furthermore,
addition of components of smaller length scales such as
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polymer chains or ionic components provides also a convenient
route to properly tune desirable effective interactions.34,47−49 In
general, the more sensitive the particles are to such changes in
their environmental conditions, the richer the class of mutual
interactions and morphological properties that can be artificially
induced upon them. In this sense, microgels (or nanogels in a
smaller length scale) represent promising candidates for the
design of responsive materials with well controllable behav-
ior.1,35,36,50,51 Contrary to hard nanoparticles, soft microgels are
able to change their size and internal conformation in response
to external stimuli, the equilibrium properties being mostly
dictated by the osmotic flow across their interfaces.52−57 The
elastic character of the cross-linked polymer chains allows
microgels to deform and partially interpenatrate each other
whenever strong attractive forces among them are present.58−60

This also makes it possible to assemble these particles into very
compact aggregates or even synthesizing them at local volume
fractions that exceed close-packing,60 considerably changing the
overall self-assembly scenario with respect to hard particle
iterations.
Aside from the aforementioned strategies to induce effective

interactions, another possibility to steer nanoparticle self-
assembly which has attracted a lot of attention over the past
decade is by subjecting them to an external drive, such as
suitably controlled electric or magnetic fields.7,61−72 This
technique has the clear advantage of being easily tunable to
reach the desirable assembly scenario, as the response of
nanoparticles to the applied field can be well tuned by either
changing the system properties or by properly switching the
field parameters.7,62 In many situations, the external field can be
controlled such as to drive the system to trapped structural
configurations which will persist for long time scales even after
the field has been switched off.65 This possibility of directing
the spatial system inhomogeneity via the application of an
external field can be used to induce bulk particle conformations
which would be otherwise very difficult to emerge sponta-
neously from particle interactions alone.
Quite recently, it has been shown in a series of works that a

rich variety of self-assembly scenarios can be induced by
submitting a system of ionic microgels to an alternating electric
field.61,64,65,73 The observed structural properties feature a
string-fluid transition at moderate applied frequencies or the
formation of long rigid chains along the field direction at
smaller frequencies, which further assemble into ordered solid-
like structures across the perpendicular plane.64 Both the rich
structural transitions and the dynamical properties of the
particle aggregation have been extensively studied as a function
of field strengths and frequency. Moreover, a recent study of
the dielectric properties of this system has revealed the main
mechanisms accounting for dielectric responses in different
frequency domains.73 Depending on the imposed frequency,
different dominant contributions are responsible for the overall
polarization, reflecting the characteristic length scales that are
excited more intensively at different oscillation modes. In spite
of the detailed analysis of the system response to the applied
field, a theoretical model capable of describing the observed
structural features in terms of the experimentally measured
quantities is up to now still missing.
From a theoretical perspective, a comprehensive description

of self-assembling processes in soft matter systems in terms of
experimentally controllable parameters is a rather challenging
task.34,48 In spite of the huge progress in computational power
acquired over the past decades, a proper description accounting

for all relevant contributions is in most cases computationally
unfeasible, since the different components have time and length
scales which typically differ from one another by orders of
magnitude. The conventional way of circumventing this
drawback is to rely on coarse-graining approaches, in which
some of these contributions are averaged out and collected
altogether into effective parameters.34,74 The connection
between such coarse-graining parameters and the quantities
typically accessible to experiments is not always clear, and a
great deal of physical insight is sometimes required to properly
interpret experimental data based on such model parameters.
One typical limitation in trying to match experimental data by
means of coarse-graining approaches is that they usually require
some degree of approximation (e.g., neglecting many-body
interactions, mean-field, linear-like, or infinite dilution approx-
imations) to be invoked in order to end up with numerically
tractable situations. To what extent such approximations are
able to reproduce real systems properties depends primarily on
the specific experimental conditions at hand. A usual approach
is to use effective quantities as fitting parameters to reproduce
the measured data and then to assign them a proper physical
interpretation based on the particular model system.

The Physics of Field-Induced Chain Aggregation. It is
well-known that the application of suited external electric or
magnetic fields in a number of systems of suspended
nanoparticles gives rise to string-like formations along the
field direction. In general terms, the origins of this
phenomenon of chain aggregation can be traced back to
field-induced, attractive dipole−dipole interactions. The phys-
ical mechanisms that ultimately lead to such induced dipole
attraction along the field direction depend, on the other hand,
on the specific coupling between particle system and applied
field. In the case of ferrofluids (or magnetic colloids) subject to
an external magnetic field, for example, it is the susceptibility
mismatch between particles and solvent that triggers the field-
induced dipole interactions (in addition to zero-field magnetic
dipole interactions). A similar process is also known to induce
dipole interactions in the case of hard colloids subject to an
alternating electric field. In this case, it is the dielectric
mismatch between colloids and solvent that gives rise to an
effective dipole moment on these particles. The mechanism of
field-induced interactions increases considerably in complexity
in the case of charged colloids, since the external field will
typically polarize the electric double layers, inducing effective
dipole interactions which depend on the (hydrodynamic-
driven) ionic response to the electric field. When nanoparticles
are permeable to solvent molecules (as is the case of microgels
or star polymers), the effects from dielectric mismatch on the
underlying induced dipole moments can be in general
neglected. The main mechanisms responsible for dipole
interactions are, in this case, the responses of the counterions,
both those condensed at the polymer backbones and those
found at the double layer. The resulting dielectric spectra of this
system become quite complex, since different frequency
domains are characterized by the main influence of quite
different ionic polarization mechanisms.73,75

From the point of view of theoretical developments, the
description of chain aggregation in terms of induced dipole
interactions goes back to the pioneering work of de Gennes and
Pincus on the string formation in ferrofluids.76 A number of
similar approaches have been put forward to successfully
describe the distribution and topology of particle aggregation in
a number of magnetic fluids composed of both mono-77−80 and
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polydisperse81,82 magnetic particles. These density-functional-
based approaches rely on the minimization of an approximate
Helmholtz free energy which explicitly depends on the
distribution of chains of a given size and topology (e.g., chains
or rings). Usually, a nearest-neighbor interaction approximation
is invoked, allowing for simple numerically tractable approaches
able of capturing several aspects of chain formation.77,78,81

Other typical approaches to predict chain formation for a given
effective dipole interaction are the Ornstein−Zernike integral
equation approaches and computer simulations. The former is
particularly useful to efficiently describe the onset of string-fluid
formation, characterized by the divergence of the structure
factor at a wavelength typical for particle aggregation. In the
case of hard colloids, it is useful to adopt a model system in
which a dipole electric/magnetic moment is embedded at the
center of a hard sphere. In the case of charged colloids, this
approximation leads to monopole interactions comprised by
hard-sphere and Yukawa-like interactions, combined with a
point dipole−dipole interaction. Although not as accurate as
computer simulations, this approach is able to qualitatively
capture many features of chain-like formation in these
systems.83

An accurate description of field-induced dipole interactions
in the case of ionic microgels requires, on the other hand, the
use of more elaborated approaches. This is not only due to the
complex dielectric response of these systems (which, in contrast
to hard-sphere colloids, is not dominated by dielectric
mismatch), but mainly because these particles are allowed to
strongly interpenetrate one another. As a consequence, the
approximation of unscreened point-like dipole interactions is in
this case rather artificial, especially at the onset of chain
formation when particles can considerably overlap each other,
resulting in more complex dipole interactions. Moreover, the
possibility of particle interpenetration should boost the
emergence and growth of chain-like aggregates, as particles
tend to bind closer together, forming more stable aggregates. A
detailed description of the dipole interactions that lead to the
experimentally observed chain formation in these systems is still
lacking. The main goal of this work is to provide such a
description by proposing a general coarse-graining approach
able of incorporating the overall physical mechanisms of chain

formation over the broad spectrum of frequency domains. The
resulting effective interactions depend on coarse-graining
parameters that can be readily interpreted in terms of
underlying physical properties. Comparisons with experiments
are performed up to the emergence of lateral chain−chain
ordering, showing a quite good agreement that validates the
underlying assumptions.
We shall here provide a combined experimental and

theoretical analysis of the self-assembly of ionic microgels
driven by an AC electric field. To this end, we will adopt a
coarse-graining approach in which the overall effects from the
time-dependent field are averaged out to provide an effective
dipolar charge at each individual microgel. The time-averaged
ionic response to the applied field is then described in this
framework through anisotropic equilibrium ionic profiles
resulting from the interactions with the microgel dipole
charges. The ionic responses to both monopole and dipole
fields are then worked out at the same linear level of
approximation. While such linear approximation is only valid
for not too strong microgel-ion interactions, its predictions for
the ionic distributions are known to be accurate at distances
beyond the ionic double layer, provided the effective
parameters are properly renormalized to incorporate the
nonlinearities present in this region.34 Since we shall here
compute these effective parameters directly from the measured
data, we can consider them to be already the renormalized
quantities that take into account nonlinear effects. Although
treated at the same level of approximation, we will consider
different degrees of ionic response to monopole and dipole
contributions. The counterions condensed at the particle
backbones do not screen the monopole interactions. So the
major contributions from the monopole screening come only
from the free ions present in the solution. These ions respond
to the monopole field in such a way as to effectively screen
these interactions. The (time-averaged) anisotropic distribu-
tions coupled to the dipole charges are proportionally weaker,
resulting in a weaker screening of dipole interactions.75,84 As we
will see later on, this assumption is well justified over a large
region of the dielectric spectra, whereby the oscillation period
of the driving force is much shorter than the typical diffusion
times of bulk ions.73 By means of molecular dynamics (MD)

Figure 1. CLSM images of field-driven self-assembly of ionic microgels at an effective volume fraction of ϕeff = 0.1 in the swollen state (T = 20
°C) as a function of field strength Erms and frequency f. Shown are 2D snapshots and an inset that depicts the Fourier transform of the
corresponding image. Also shown is an image obtained with the suspension at zero field in the upper right corner.
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simulations and liquid-state integral equations (IE) techniques,
the predictions of the model system are directly compared with
experimental measurements for the in and out of plane pair
correlation functions. A very good agreement is observed,
which is later on probed by comparing the obtained effective
dipole moments with the ones calculated from dielectric
spectroscopy measurements for the same system, thereby
validating the underlying theoretical assumptions and providing
a robust and reliable description of driven self-assembly by
means of time-averaged effective interactions arising from
equilibrium considerations.
The remaining of this work is organized as follows. In the

Results and Discussion section, the experimental system under
investigation is presented in some detail, along with its
synthesis protocol. The theoretical model considered to
describe this system is subsequently outlined, followed by
comparisons between experiments and theoretical predictions,
which are critically discussed. A brief discussion on the
numerical and experimental methods employed in this analysis
is then provided in the Methods section. In the Conclusions
section, some concluding remarks and perspectives for future
investigations are outlined.

RESULTS AND DISCUSSION
Experimental Observations. We first describe the

behavior of fully deionized microgel suspensions at low density
(effective packing fraction ϕeff = 0.1) in the swollen state (T =
20 °C) in the presence of an alternating electric field, which is
applied in the image plane, with amplitude E0 and angular
frequency ω = 2πf. The root-mean-square value Erms = E0/√2
is a convenient measure of the field strength. The particles used
are almost monodisperse ionic poly-N-isopropylacrylamide
(PNIPAM) microgels with a cross-link density of 5 mol %
and a hydrodynamic radius of aH = 530 nm, as determined by
dynamic light scattering (see Methods and refs 64 and 65 for
more details on the synthesis and particle characterization).
A summary of the overall field-driven assembly of microgel

particles at different electric field strengths and frequencies is
given in Figure 1, where 2D snapshots obtained by confocal
laser scanning microscope (CLSM) are shown together with a
Fourier transform of the corresponding images. The CLSM
images obtained at a fixed frequency f = 100 kHz clearly
demonstrate field-induced transitions with increasing field
strength from E = 0 to Erms = 0.0317 Vμm−1. At low field
strength, Erms = 0.0136 Vμm−1, the microgels slowly start to
align along the field direction to form chains containing only
two or three particles. At this low field strength, chains form
and break spontaneously due to the competition between
thermal energy and weak induced dipolar interactions. With
increasing E, the chain length increases, and chains stiffen (see
image at Erms = 0.0227 Vμm−1). At higher field strengths, Erms =
0.0317 Vμm−1, the chain length further grows, and the chains
associate laterally, form aggregates, and subsequently crystallize
into a body centered tetragonal structure (BCT). Details of the
concentration-dependent field-induced phase behavior and the
field-directed self-assembly can be found elsewhere.64,65

Interestingly, when keeping the field strength constant and
varying the frequency from 100 kHz to 1500 kHz, the
propensity of the microgels to self-assemble and form chains
decreases, see Figure 1. This frequency dependence of the field-
driven particle assembly can be understood from our recent
dielectric spectroscopy study.73 The dominant polarization
mechanisms for ionic microgels in an external AC field are due

to the mobility of internal counterions at low frequencies, the
diffuse double layer around the particles at intermediate
frequencies, and the polymer backbone at higher frequencies,
that is, in the MHz regime. Moreover, the polymer backbone
polarization is much weaker when compared to double layer
and counterion polarization arising at low and intermediate
frequencies, respectively.73

Based on our visual observations, two distinct regimes can be
defined: (a) a weakly anisotropic regime at lower Erms = 0.0136
Vμm−1, where it is difficult to distinguish the structural changes
that occur at different frequencies (bottom row in Figure 1),
and (b) a strongly anisotropic regime at higher Erms ≥ 0.0227
Vμm−1, where long-range correlations in the form of particle
association into chains along the field direction and weakening
of these structures with increasing frequency are clearly visible
(middle and top rows in Figure 1). While these observations
provide a qualitative picture of the field-driven self-assembly of
ionic microgels as a function of field strength and frequency, we
will now develop a model that provides quantitative
information on the radial distribution function g(r) along and
perpendicular to the electric field direction. Here we
concentrate on the fluid-string regime at Erms = 0.0136
Vμm−1 and 0.0227 Vμm−1, respectively, where we compare
our experimental data with predictions from theory and
simulation.

Theory of Electric Field-Driven Effective Interactions.
In order to theoretically describe the system outlined above, we
consider a coarse-grained approach in which the effects from
the AC field (time-averaged over one cycle) are modeled
through the buildup of dipolar charges at the microgel
boundaries aligned to the field, which can be further screened
by the surrounding counterions. While these dipoles should
qualitatively account for the field-induced microgel attraction
along the field direction, the partial screening of these
interactions represents (in a linear level) the time-averaged
anisotropic ionic distribution caused by the AC field. In
addition, the microgels carry a net, fixed monopole charge, see
Figure 2a. We are going to employ a linearized Debye−Hückel
approach to derive both monopole and dipole interactions for
the experimental system outlined above. First, we will calculate
monopole and dipole electric fields under the assumptions of
static and time-averaged interactions, respectively. The resulting
potentials will then be used to compute pair correlation
functions for (decoupled) monopole−monopole and dipole−
dipole interactions. Finally, these interactions will be combined
with a short-ranged repulsion, which qualitatively accounts for
the elastic repulsion under mutual compression to build-up a
coarse-graining effective pair potential. The reader already
familiar with the derivation of monopole interactions in charged
microgels in this context can skip this first part or the coarse-
graining potential derivation.
In the framework of a linear approximation for the ionic

responses to both monopole and dipole microgel contributions,
it can be readily shown that the effective Hamiltonian for the
microgel system (after averaging out ionic contributions)
comprises only zero and pairwise additive many-body
contributions (known as volume terms and effective pair
interactions, respectively). The former contributions are
relevant for calculating thermodynamic properties, while the
latter dictates the structural transitions whenever third- and
higher-order body effects are negligible. The electrostatic
contribution to the effective pair interactions at this linear
level reads as
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∫ ψ= ′ ′ − ϱ ′u r r r r r( ) d ( ) ( )elec (1)

where ϱ(r′) is the charge distribution assigned to each
microgel, and ψ(r) is the ion-averaged potential around one
microgel. As discussed above, the microgel charge distribution
can be further split into monopole and dipole contributions,
ϱ(r) = ϱM(r) + ϱD(r). There are different possibilities of
choosing a monopole charge distribution to reproduce the
internal conformation of the charged polymer backbones. In
the case loosely cross-linked microgels in a swollen state, a
picture which is capable of capturing the essential system
features in a simple way is that of a uniform charge distribution
smeared out over the particle volume, ϱM(r) = 3ZeΘ(a − r)/
4πa3, where a is the microgel radius, e is the proton charge, and
Z is the valency of the microgel (we have assumed positively
charged microgels, without loss of generality). It might be
argued that such a uniform charge density is a rather crude
approximation to the real backbone charge distribution, which
is (in view of the relatively large particle sizes) most likely of a
core−shell nature. However, introduction of inhomogeneous
monopole charge distributions at such a first-level approx-
imation would only render the monopole interactions
unnecessarily complex, without changing the physics behind
the dipole interactions that lead to nontrivial particle self-
assembly.
Regarding the dipolar charge, we consider the buildup of an

asymmetric charge density at the microgel surface which results
by slightly displacing two otherwise completely overlapped,
oppositely charged spheres, carrying, respectively, uniform
monopole charges ±ϱuni(r) = ±ρ0eΘ(a − r) along the field
direction eẑ, as depicted in Figure 2b. Note that the fictitious
monopole charge density ρ0e has nothing to do with the real
monopole charge distribution on the microgels, but it is simply

an intermediate mathematical tool to produce the sought for
dipolar charge distribution induced by the external electric field.
Our approximation to the dipole contributions is then obtained
by considering the formal limit in which this displacement d =
deẑ vanishes, while keeping the product ρ0ed ≡ P constant in
magnitude:

ϱ = ϱ + − ϱ = ∇ϱ ·
ρ

ρ→
→∞

→
r r d r r d( ) lim [ ( ) ( )] lim ( )D d uni uni ed P uni0

0
0

(2)

Replacing the uniform monopole charge of magnitude (per unit
of e) ρ0 homogeneously distributed over the spherical microgel,
ϱuni(r) = ρ0eΘ(a − r), in the above relation, we obtain

ρ δ δ θϱ = − ̂ · = −e r a P r ar e d( ) ( ) ( )cosD r0 (3)

where θ is the polar angle between the position vector r and the
field direction. Evidently, we obtain a surface charge density
modulated by the cosine of the angle with the z-axis. Moreover,
we have defined the reduced polarization P (dipole moment
per unit volume) as the limit in which the displacement d
vanishes, and at the same time the monopole distribution ρ0e
goes to infinity, in such a way as to keep the product P = ρ0ed
constant. This construction of the dipolar charge distribution is
consistent with the physical picture of a uniform dipole
moment density P of point-like dipoles aligned toward the field
direction, such that the internal charges exactly cancel each
other, leaving only a nonvanishing charge density at the particle
boundaries.
In practice, the frequency-dependent polarization P should

be related to the ionic charge density ϱind(r) induced by the
electric field inside the microgel via:

∫
π

= ϱ ̂
a

zP r r e
3

4
d ( )ind z3 (4)

It is clear from this exact relation that the microgel polarization
P = ρ0ed we have defined to describe time-averaged field effects
is an effective parameter, which, in taking quantitatively into
account the complex charge diffusion within the polymer
meshes, ultimately leads to dipolar microgel interactions. In a
static situation, eq 4 yields a fixed polarization, whereas in our
case the latter oscillates with time, following the external field.
The cycled-averaged induced polarization of a single microgel
is, of course, zero; however, the instantaneous induced dipole
moments of any two microgels in the solution are always
parallel to one another, and the time-independent dipole−
dipole effective interaction to be derived in what follows should
be understood as the average of the instantaneous one over one
period of the field. This quantity scales with P2, thus the
polarization P above should be understood in the context of the
experiment at hand as the root-mean-square (rms) of the
microgels’ instantaneous polarization. It follows that P is
expected to be proportional to the value Erms of the imposed
field, with some frequency-dependent proportionality constant,
which will be determined later on the basis of experimental
results from dielectric spectroscopy.73

Due to the polar symmetry of the dipolar charge distribution,
the electrostatic pair potential described by eq 1 will comprise
only monopole−monopole and dipole−dipole interactions, the
crossed dipole−monopole interactions vanishing identically. To
see why this happens, let us consider the net force on particle 2
of Figure 2a resulting from its dipole−monopole coupling with
the charges on particle 1. The total force exerted by the

Figure 2. Sketch of our model system. (a) Microgels under the
influence of an AC field of amplitude E0 and frequency ω along the
eẑ direction will acquire a frequency-dependent dipole charge ϱD(r)
in addition to the equilibrium monopole charge distribution ϱM(r)
= 3ZeΘ(a − r)/4πa3. (b) The dipolar-induced charges are obtained
by overlapping two such oppositely charged monopoles with
uniform charge distributions ± ρ0e up to a center-to-center
distance d. The dipole charge distribution ϱD(r) = Pδ(a − r) er̂ · eẑ
follows by taking the limits d → 0 and ρ0 → ∞, while keeping the
product P = ρ0ed constant. The microgel polarization points in the
direction of the applied field, eẑ.
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monopole charge of particle 1 on the dipolar charge
distribution of particle 2 will be completely counterbalanced
by the force that the dipolar charge distribution of particle 1
exerts on the monopole of particle 2. This symmetry should
breakdown in the case of polydisperse microgels, in which case
the charge asymmetry between different components may give
rise to nontrivial monopole−dipole couplings. We will
disregard such polydispersity effects on what follows and
focus solely on the monopole−monopole and dipole−dipole
electrostatic interactions.
We consider an ionic solution of such microgels in

monovalent salt with counter- and co-ion bulk concentrations
ρb. Applying the linearized approximation of Poisson−
Boltzmann theory, that is, the Debye−Hückel theory, one
obtains the result that both the monopole and the dipole
potentials ψM(r) and ψD(r) are screened at large distances |r|≫
a by the same factor ∼ exp(−κr), where 1/κ is the Debye
screening length.85 This arises out of the fact that the Debye−
Hückel approximation is a linear theory, and therefore the
monopole and dipole potentials separately obey, in the static
case, the equations:

κ ψ π
ε

∇ − = − ϱr r( ) ( )
4

( )M M
2 2

(5a)

κ ψ π
ε

∇ − = − ϱr r( ) ( )
4

( )D D
2 2

(5b)

where ε = 80 is the water permittivity, κ πλ ρ ρ= + Z4 (2 )B b
is the inverse Debye screening length, with ρ being the overall
microgel concentration and λB = βe2/ε is the Bjerrum length,
which measures the distance at which thermal and electrostatic
energies have similar strengths, β = (kBT)

−1 being the inverse
temperature (λB ≅ 7.2 Å in the present case of an aqueous
solution at room temperature). Notice that the inverse Debye
screening lengthand therefore the monopole and dipole
potentialsexplicitly depends on the microgel concentration.
This is because the above approach is equivalent to linearizing
the potential around a Donnan potential which ensures overall
charge neutrality, rendering the pair interactions density
dependent. For the case of time-dependent external fields as
the one at hand, we need to generalize this approach in a
heuristic way, which will be afterward justified by comparison
with experimental results. In particular, the screening of the
dipolar interactions has to be reconsidered for a number of
reasons, namely the following.

(1) The dipolar attractions along the field direction bring
forward the formation of (short or long) chains. The
modeling of each dipolar microgel as an idealized surface
charge is appropriate for larger separations but not for
close contacts. A more realistic scenario for close
approaches, which is fully supported by experimental
evidence86 (also: S. Nöjd, C. Hirst, J. Schmitt, M. Obiols-
Rabasa, A. Radulescu, P. S. Mohanty, and P.
Schurtenberger, unpublished data), is that upon close
approach or chain formation two neighboring microgels
interpenetrate, so that the oppositely charged regions on
the two fully overlap. The physical situation thus is much
more akin to two superimposed patches of opposite
charge without any intervening electrolyte, implying a
strong unscreened attraction between the two.

(2) The linear screening assumption is also questionable
from a formal point of view for overlapping, chain-

forming microgels, since it is based on the assumption of
weak attractions, of order of the thermal energy. Stable
chain formation as in the present case, on the other hand,
requires stronger attractions along the field direction.

(3) Finally, it should be kept in mind that the dipolar
interaction introduced here is a notion based on time
averages, and thus the screening length of the dipoles is
expected to have a frequency dependence. Indeed, as f→
0, full screening is expected, whereas at very high
frequencies, whose inverse is smaller than the character-
istic relaxation time of a microgel, two microgel particles
in a chain have no time to detach during the part of the
cycle in which the external field is close to zero, and thus
no screening of the patch attractions should take place in
that case. At intermediate frequencies, we expect the
near-field attractions to be screened for a part of a cycle
and unscreened for the rest.

Guided by the above considerations, we make a general-
ization of the static Debye−Hückel approach by introducing
two different screening lengths for the monopoles and the
dipoles, namely we replace eqs 5a and 5b with

κ ψ π
ε

∇ − = − ϱr r( ) ( )
4

( )M M M
2 2

(6a)

κ ψ π
ε

∇ − = − ϱr r( ) ( )
4

( )D D D
2 2

(6b)

which introduce two different inverse screening lengths, κM for
the monopoles and κD for the dipoles. As the former are static,
κM = κ, but, in general, the dipoles will be more weakly screened
and thus κD ≤ κM. This means that ions will screen more
intensively the monopole interactions, as they are able to react
to these equilibrium interactions within very large time scales,
in comparison with the dipole interactions. On the physical
grounds explained above, we postulate that κD → κM as f → 0
and κD → 0 as f → ∞. The formal solutions to eqs 6a and 6b
can be readily written in terms of the corresponding Green
function for vanishing boundary conditions in the open system

G(r, r′) = −e−κ |r−r′|/(4π|r − r′|) as

∫ψ
ε

= ϱ ′
| − ′|

′
κ− | − ′|e

r r
r r

r( )
1

( ) dM D M D

r r

, ,

M D,

(7)

The above integrals can be solved analytically for both
distributions ϱM(r) and ϱD(r) to provide explicit closed
expressions for the effective electrostatic monopole and dipole
interactions. Following eq 1, the resulting monopole−
monopole uMM(r) and dipole−dipole uDD(r) interactions at
the linear regime under consideration can thus be written as

∫ ψ= ϱ ′ ′ − ′u r r r r r( ) ( ) ( )dMM M M (8)

∫ ψ= ϱ ′ ′ − ′u r r r r r( ) ( ) ( )dDD D D (9)

We are now going to work out these monopole−monopole and
dipole−dipole contributions to the total electrostatic pair
potential separately.

Monopole−Monopole Interactions. Substitution of the
uniform monopole charge ϱM(r) = 3ZeΘ(a − r)/(4πa3) in
eq 7 results in the following monopole electrostatic potential:

ψ
κ ε

κ= ≥
κ−

r
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a

F a
e

r
r a( )

3
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M
M

r

3 3
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(10)
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M M3 3
M

(11)

where we have defined the function F(x) ≡ xcosh(x) −
sinh(x). The monopole−monopole pair interactions can be
now obtained by replacing the above potentials in eq 8,
together with the monopole charge ρM(r). The resulting
monopole−monopole pair potential at regions beyond particle
overlap distances (r ≥ 2a) is
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The above pair interaction is the usual screened Yukawa
potential with an effective charge which accounts for finite
microgel size as well as for the ionic adsorption into their soft
cores. At distances shorter than particle overlap, the monopole
pair potential reads as
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where the function γ(r) reads as
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Not surprisingly, the above expressions for the effective
monopole pair potentials are identical to those obtained in
early contributions for microgels in the absence of external
fields.87,88 This is due to the complete decoupling of monopole
and dipole interactions at this linear level of approximation.
Dipole−Dipole Interactions. Despite the calculations being

a bit more involved, the dipole−dipole pair interactions can
also be analytically obtained following essentially the same steps
outlined above for the monopole interactions. Upon sub-
stitution of the microgel dipolar charge distribution ϱD(r′) =
Pδ(r′ − a)cos θ′ in eq 7 for the dipole mean potential, we
obtain the following dipole electrostatic potential outside the
microgel volume (r ≥ a):
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whereas the dipole potential inside the microgel (r < a) reads as
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The effective dipole interactions can now be obtained by
replacing the dipole potentials in eq 9, together with the dipole
charge distribution ϱD(r′) = Pδ(r′−a)cos θ′. After some
algebraic manipulations, the details of which we will omit here,
we arrive at effective pair interactions in the form:

β β β θ= +u u r u r Pr( ) ( ) ( ) (cos )DD DD DD
(0) (2)

2 (17)

where now cos θ = er̂ · eẑ is the angle between the vector r
connecting the center of the two microgels and the z-axis, and
P2(x) = (3x2−1)/2 is the usual second-order Legendre

polynomial. For distances beyond particle overlaps (r ≥ 2a),
the radial coefficients βuDD

(0)(r) and βuDD
(2)(r) are
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Here, we have defined the dimensionless parameter τ ≡ 4πa2P/
(3e) = p/(ae), where p = 4πa3P/3 is the (rms strength of the)
microgel dipole moment. The coefficient τ is the effective,
dimensionless parameter, which expresses the strength of the
field-induced dipole interactions. It implicitly depends on both
strength and frequency of the driving applied field and should
contain the average information on how the charges inside the
microgel are spatially separated as a response to the field. By
construction, it should also comprise nonlinear effects from the
ionic distributions at the double-layer as well as possible many-
body effects. This is because this quantity is defined within a
linear response approach, which leads to pairwise effective
interactions. Extension of these interactions to more general
situations requires thus the incorporation of nonlinear and
many-body effects into this effective parameter. This is quite
similar to what is usually done in the case of colloidal
interactions, whereby the traditional Derjaguin−Landau−
Verwey−Overbeek (DLVO) pair interactions are generalized
to circumstances of nonlinear screening (ionic condensation)
and many-body effects (overlapping of electric double layers)
provided these effects are properly incorporated into an
effective, renormalized colloidal charge.34,47

At regions of particle superposition (r < 2a), the radial
coefficients βuDD

(0)(r) and βuDD
(2)(r) take the form:
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Equations 17, 18a, 18b, 19a, and 19b completely specify the
effective, field-induced dipole interactions all over the space.
Apart from the microgel size, these interactions are fully
determined by two dimensionless strength parameters: the
coefficient τ which accounts for the induced dipole moment
inside the polymer backbones and the parameter κDa which is
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related to the anisotropic rearrangement of ions in response to
the applied field, effectively leading to screened dipole−dipole
interactions. While the latter depends only on the driving
frequency f of the external field, the former should implicitly
depend on both strength and frequency of the applied AC field.
In Figure 3 we show some typical features of the effective

dipole−dipole pair potential across both parallel (Figure 3a)
and perpendicular (Figure 3b) field directions. While these
interactions are purely repulsive along the planes perpendicular
to the applied field, they become attractive at larger distances in
the direction parallel to the field. As the dipole moment,
described by the dimensionless parameter τ, grows larger, a
potential well starts emerging along the field direction. The
dipole interactions across intermediate directions interpolate
between these different types of behavior. For the largest dipole
moment τ = 300, the depth of this potential well is about 40
times the thermal energy, anticipating a strong tendency to
chain-like formations across the field direction at higher dipole
moments, in accordance to the experimental observations
described previously. However, it is important to notice that
this potential well lies at distances sufficiently shorter than
particle−particle contact, whereby both monopole−monopole
and elastic repulsion (as we shall see in the next section)
become very strong. It is the specific interplay between these
competing contributions that will dictate the self-assembly
properties of these systems.
Although the expressions for the effective dipolar interactions

are rather cumbersome and difficult to be assigned with
transparent physical interpretations, it is important to notice
that they will assume very simple forms in the limit of
unscreened dipoles (κD → 0). Considering this limiting
behavior on the expressions above, the radial coefficients in
regions where r ≥ 2a become

β = ≥u r a0, ( 2 )DD
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whereas for overlapping particles, they read as
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Interesting enough, the zero-order contribution in the dipole
expansion is nonvanishing even in the case of unscreened
overlapping microgels. This finite size contribution obviously
disappears in the limit of point-like dipoles a → 0, whereby the
usual dipole interactions between a pair of aligned point dipoles
uDD(r) = (−2p2/r3)P2(cos θ) is recovered.

Effective Pair Interactions. We are now in position to
combine the electrostatic interactions obtained above and write
down the total pair microgel potential. Apart from these
electrostatic interactions, the microgels also experience a soft
steric repulsion at contact, that is, for distances shorter than the
particle diameter. We model this short-ranged soft repulsion
through the well-known Hertz potential, which was previously
found to quantitatively reproduce the structural correlations
between microgels of similar cross-link density throughout the
fluid region of the phase diagram.89 It is however important to
point out that this choice is completely phenomenological, as
the Hertzian soft repulsion has been derived for the case of
elastic and nonpenetrable spheres, while the particles here are
able to interpenetrate.86 Since this contribution is fully
decoupled from the electrostatic ones, it simply adds up to
the overlapping electrostatic pair potentials. The (dimension-
less) Hertzian potential βuH(r) is given by58

β = ϵ − Θ −⎜ ⎟⎛
⎝

⎞
⎠u r

r
a

a r( ) 1
2

(2 )H H

5/2

(22)

where ϵH is a dimensionless parameter that dictates the strength
of the elastic repulsion at close contact. In practice, this
quantity is related to the size and internal structure of microgels
via ϵH = 8 a3/5DkBT, where D = (1 − ν2)/2K(1 − 2ν), with ν
being the Poisson’s ratio and K the bulk modulus characteristic
of the microgel material.58,59

The total anisotropic pair potential can be finally written as a
combination of zero- and second-order contributions in a
Legendre polynomials expansion as βueff(r) = βu0(r) + βu2(r)
P2(cos θ), where higher order multipole contributions vanish
identically at this linear level of approximation. The coefficients
βu0(r) and βu2(r) are written in terms of the contributions
described above as

β β β β= + +u r u r u r u r( ) ( ) ( ) ( )H MM DD0
(0)

(23a)

Figure 3. Typical dipole−dipole effective potentials corresponding to different dimensionelss dipole moments τ = p/(ae) and at the directions
parallel (a) and orthogonal (b) to the applied field. Here we chose a microgel radius a = 0.3 μm and an inverse dipole screening length κD =
8.34 μm−1.
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β β=u r u r( ) ( )DD2
(2)

(23b)

The contributions from βu0(r) are given by eqs 12, 13, 18a, 19a,
and 22, whereas the contributions in βu2(r) are fully specified in
eqs 18b and 19b. Overall, the total pair interactions are fully
determined by six independent coarse-graining parameters: λB/
a (measuring the interplay between thermal and electrostatic
energies at particle contact), the microgel bare charge Ze, the
monopole inverse Debye screening length κM (controlling the
screening of monopoles), the dipole inverse Debye screening
length κD (which dictates the degree of dipole screening as a
reaction to the field), the dimensionless microgel dipole
moment τ = p/(ae), and the strength parameter of the
Hertzian potential ϵH. A rich variety of effective interactions can
be obtained upon changing these parameters. While monopole
and elastic contributions are always repulsive, the dipole
interactions continuously change between fully repulsive along
the plane orthogonal to the field (θ = π/2) to partially attractive
along the field direction, where a potential well emerges at
distances close to particle overlap (see Figure 3). We then
expect that the degree of particle penetration along the field
direction will be mostly dictated by the competition between
dipole attraction, the monopole repulsion, and the short-ranged
elastic interactions. We emphasize, however, that none of these
quantities has been employed here as a fitting parameter;
rather, we have extracted them from experimental data, and we
have thereby performed a comparison of the ensuing
theoretical pair correlations in the system with those measured
in experiments. We are now going to analyze the structural
features of this model system in light of experimental
observations.
Comparison with Experiments. In order to test the

accuracy of the proposed theoretical approach, we now proceed
to compare its predictions for the structural properties against
experimental results for the system described above. The first
step toward this direction is to determine what the equilibrium
(no field) effective parameters characteristic of this system are.
Although the experiments were performed in the absence of
added salt, the aqueous solution is in equilibrium with
atmospheric carbon dioxide, which leads to the dissociation
of a 1:1 electrolyte. The corresponding ionic strength has been
obtained in a previous work (see ref 73) to be I = 2.54 × 10−6

M, resulting in an inverse Debye screening length κb = 5.3
μm−1. Linearization of the far-field around a Donnan potential,
which ensures overall charge neutrality, implies a density-
dependen t monopo l e inve r s e s c r een ing l eng th

κ κ κ κ= +1 /M b mon b
2 2 , where κmon

2 = 4πλBZρ represents the
screening contribution originated from dissociated counterions
at the monomer backbones. Since both the overall packing
fraction and particle size are directly accessible to measure-
ments (from each the values a = 0.53 μm for the particle radii
and ϕeff = 0.1 for the overall packing fractions have been
obtained, see subsection on experimental results), all we need
to fully specify the equilibrium, zero-field properties are the
particle charge Z and the strength of the Hertzian potential ϵH.
To this end, we match the measured equilibrium pair
correlation function in the absence of applied field with
predictions for our model potential (setting τ = 0), in the
framework of integral equations in the hypernetted-chain
(HNC) approximation, which is known to be quite accurate in
predicting the structures of Yukawa-like systems.58,90 The result
of this approach is shown in Figure 4. A very good match

between experimental and theoretical pair correlations is
observed when the dimensionless coarse-graining parameters
assume the values Z = 100 and ϵH = 800, fixing the values of
these quantities, as can be verified by Figure 4. Note that the
resulting low microgel charge is in good agreement with
independently determined experimental values of similar
microgels.73

The total effective potential corresponding to this set of
parameters is shown in Figure 5 for different effective dipole
moments τ in the unscreened limit (κD = 0), both along (left
panel) and perpendicular (right panel) to the field direction. As
the dipole moment becomes larger, the pair interactions
become more repulsive at the perpendicular plane, and at the
same time a potential well at close contact starts to emerge,
again indicating the possibility of fluid-string transition. We
have made here the assumption that the microgel radius a
remains constant despite the accumulation of microgels along
chains that form as the field strength increases, an
approximation fully justified by the findings of recent, zero-
average contrast experiments even at densities exceeding the
overlap concentration.86 Here it is important to point out that
the zero average contrast method is the only direct
experimental method which can be used to obtain information
about the single particle size and shape at concentrations
approaching or exceeding close packing. Although there are a
number of experimental papers where deswelling of microgels
has been reported,37,60,91,92 the size determination is done
indirectly either by fitting the structure factor described by an
effective hard sphere model, using osmotic pressure measure-
ments, or based on an estimate of the average interparticle
distance, obtained using static light scattering (see ref 86 for a
detailed discussion). Moreover, as can be seen in Figure 5a, the
minimum of the total interaction potential for microgels aligned

Figure 4. Radial distribution function in the absence of applied
field. The microgel radius, as obtained from Dynamic light
scattering is a = 0.53 μm, and the overall microgel volume fraction
is ϕeff = 0.1. The inverse monopole screening length is given by

κ κ κ κ= +1 /M b mon b
2 2 , where κmon

2 = 4πλBZρ represents the
monomer screening contributions and κb = 5.3 μm−1 results from
direct measurements of the amount of dissociated 1:1 electrolyte.
The theoretical predictions from our coarse-graining model are
obtained in the framework of the HNC integral equations approach
(solid red line) and shows excellent agreement with experimental
results (symbols) for the dimensionless effective parameters Z =
100, and ϵH = 800. For the sake of completeness, the radial
distribution function from MD simulations for the same system
parameters (and τ = 0) is also displayed (black solid curve).
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along the z-axis occurs at separations slightly smaller than the

diameter 2a, which is again fully consistent with experimental

findings pointing toward microgel interpenetration rather than

deformation along the direction of the field-induced chains (S.

Nöjd, C. Hirst, J. Schmitt, M. Obiols-Rabasa, A. Radulescu, P. S.

Mohanty, and P. Schurtenberger, unpublished data). This

behavior is to be contrasted with the case of hard nanoparticles,

which are not allowed to change their size or shape under

Figure 5. Effective pair potential corresponding to the monopole parameters obtained from the HNC fitting, for different values of the
dimensionless dipole moments τ. The particle radius is a = 0.53 μm, its total monopole charge is Z = 100, the inverse monopole dipole
screening length is κM = 5.26 μm−1, and the strength parameter for the Hertz interaction is ϵH = 800. All the dipole interactions are
unscreened, corresponding to κD = 0. In (a), the interactions are along the field direction, while in (b) they are perpendicular to the applied
field. The inset in (a) shows the effects of changing the particle softness (as measured from the Hertz strength ϵH) on the effective pair
interactions corresponding to τ = 200. The Hertzian strengths are in this case ϵH = 50, 100, 500, and 1000. The arrow indicates the direction
of increasing ϵH.

Figure 6. Pair correlation functions in directions parallel (a and c) and perpendicular (b and d) to the applied field for an AC field of strength
Erms = 0.0136 Vμm−1. Symbols are experimental results, whereas solid lines are predictions from the HNC approach (a and b) and simulation
results (c and d). In panel (a) we also show the result for the (isotropic) g(r) for vanishing external field, E = 0, for completeness. The driving
frequencies and the resulting dipole moments are indicated in the legends.
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compression. Since soft nanoparticles are able to overlap each
other in the presence of attractive interactions, these particles
can be strongly attached to one another to form close-packed
configurations (T. Colla, R. Blaak, and C. N. Likos, unpublihsed
data). This will clearly favor the formation of chain-like
structures across a direction where the interactions are strongly
attractive. Such tendency of particles to come very close
together in such a way as to minimize their mutual interacting
energy is manifested by the presence of a potential well in their
pair interactions. In the inset of Figure 5a, we show the effects
of particle stiffness on their effective pair potentials. We can see
that the stiffness of the short-ranged repulsion decreases the
depth of the potential well, which is further shifted to longer
interparticle distances. This clearly indicates that soft particles
tend to be more closely attached to each other across the field
direction, a mechanism that should definitely favor the string
formation along this direction.
To obtain the effective, frequency- and field-strength-

dependent microgel dipole moments, we will make the
assumption that frequencies in the range under investigation
(100 kHz ≤ f ≤ 1500 kHz) are too fast for the microgels that
associate into chains to react, such that the counterions do not
screen the near-overlap dipole interactions. This assumption is
far from trivial and depends on the specific conditions
underlying the system at hand. Indeed, a detailed description
of the interplay between particle diffusion and attraction in the
presence of driving fields is a rather challenging question.93 In
the present case, it is justified by recent theoretical and
experimental dielectric spectroscopy investigations.73 Our
strategy here is to first obtain the frequency-dependent dipole
moments in the absence of screening and then to test the
validity of these hypothesis afterward, by comparing the results
with available dielectric spectroscopy predictions. The compar-
isons with experimental data are performed for two different
field strengths: Erms = 0.0136 Vμm−1 and Erms = 0.0227 Vμm−1.
We recall that the field strength and the induced dipole
moment are proportional to each other, p = α( f)Erms, the
frequency-dependent proportionality constant being the micro-
gel polarizability α( f) in solution. We therefore expect that the
ratio between dipole moments obtained at the same frequencies
should coincide with the field strength ratio, τ1/τ2 = E1/E2. The
dipole moments τ( f) are computed by fitting the measured data
via the anisotropic hypernetted chain (HNC) integral equation
approximation and MD simulations. The former has the

advantage of being computationally much more efficient,
providing a simple way of estimating the values of the effective
dipole moment τ. Its predictions are however significantly less
reliable than the simulation ones, as the HNC approach is
known to underestimate the pair correlations in the case of
unscreened Coulombic interactions. Furthermore, the approx-
imation fails to provide convergent solutions close to the onset
of structural transitions.
In Figure 6 we show comparisons between theory (solid

lines) and experiments (symbols) at the directions parallel (left
panels) and perpendicular (right panels) to the field at the field
strength Erms = 0.0136 Vμm−1. A very good agreement is found
for both HNC (upper panels) and simulation (lower panels)
approaches. The predicted frequency-dependent dipole mo-
ments τ are however different in the two approaches. This
discrepancy can be assigned to the inaccuracy of the HNC
approach in capturing the structure of unscreened dipole
interactions, which are known to be underestimated in this
approach. Although the magnitudes are slightly different, both
approaches predict similar behaviors for the induced dipole
moment, which decreases at similar rates as the driving
frequency increases.
To further test the predictive power of the proposed theory,

we compare simulation results with experimental data for the
case of a larger field strength, Erms = 0.0227 Vμm−1. For such
larger field magnitude, the HNC approach starts to breakdown
at smaller frequencies, indicating the emergence of strong
structural ordering in this regime. The results for the in and out
of plane correlation functions from both experiments (symbols)
and simulations (solid lines) are displayed in Figure 7. Here we
see that the overall agreement between theory and experiment
is again very good, except for the correlation function
perpendicular to the field direction at frequency f = 100 kHz
(see Figure 7b). This disagreement most likely indicates that
the experimental point at Erms = 0.0227 Vμm−1 (frequency f =
100 kHz) is already in the coexistence region, where a locally
ordered phase coexists with a string-fluid.64 Chain−chain
aggregation is clearly visible in the 2D CLSM image (Figure
9). Usually a phase transition close to freezing is governed by
kinetics, which in turn depends here on the aggregation of
chains into dense structures. These structures ultimately evolve
into a stable ordered phase.94 However, our present work
primarily focuses on comparing the experimentally obtained
structural correlation functions in the equilibrium fluid phase,

Figure 7. Pair correlation functions in both parallel (a) and perpendicular (b) directions to the field for an AC field of magnitude Erms =
0.0227 Vμm−1. Symbols are experimental results, whereas solid lines are simulation predictions. The driving frequencies and the resulting
dipole moments are shown in the legends. The inset in panel (a) is a zoom-in at the main peaks of the two higher frequencies, which are
obscured due to the chosen scale.
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covering the isotropic fluid to the fluid-string phase. Although
the theoretical predictions for the perpendicular field structure
do show a slight increase in particle ordering at f = 100 kHz, it
is still far off the experimental data. This might be an indication
that the emergence of chain ordering is shifted to higher
effective dipole moments. A detailed combined theoretical/
experimental analysis of the rich phase diagram goes beyond
the scope of this work and will be the subject of a future
investigation.

It is important to note that the ratio between the two electric
fields under consideration, E2/E1 ≅ 1.67, matches within a few
percent with the ratios between the dipole moments
corresponding to the same driving frequency, confirming the
robustness of the proposed theoretical approach. This trend is
also verified for the smallest driving frequency f = 100 kHz,
which strongly suggests that our initial assumption, namely the
nearly absence of screening for the dipole interactions at this
frequency domain, is indeed appropriate. The theoretical results
for the dipole moments for the two different samples under
investigation are summarized in Table 1. A direct comparison
between experimental CLSM images and simulation snapshots
is shown in Figure 9, underlying visually the excellent
agreement between the two.
As a final test for the accuracy of our theoretical approach, we

now compare the obtained dipole moments with results from
dielectric spectroscopy measurements73 that allow us to extract
the frequency-dependent permittivity at an applied field
strength of Erms = 0.0136 Vμm−1. In such measurements, the

overall real part of the system’s relative permittivity ε′( f)/ε0
(where ε0 is the vacuum permittivity) can be obtained as a
function of the imposed frequency. Experimentally, the
complex dielectric permittivity of deionized ionic PNIPAM
microgel suspensions at different concentrations over a wide
frequency range from 10 Hz to 107 Hz in the swollen state (at
T = 20 °C) was measured. The particles used had an identical
cross-link density and a comparable size of aH = 578 nm (see
ref 73 for details).
The experimentally determined quantity ε′( f) connects the

rms in-phase polarization of the whole material, f( ), with the
applied electric field via:

ε ε= ′ −f f E( ) ( ( ) )0 rms (24)

We employed SI units in eq 24 to comply with notation used in
ref 73, whereas Gauss units have been used in the theoretical
part. There is no conflict, however, since the quantity τ( f) is
dimensionless, and thus it attains the same value in all systems
of units. Due care must be taken in converting this measured
quantity into the effective dipole moment τ( f), which is the
main input in our coarse-graining approach. Indeed, the dipole
moment defined in our theoretical model is the one assigned to
one individual microgel, which builds up as a response to the
electric field. This quantity is conceived to be on top of any
effects of the field on the (strongly polarizable) solvent
environment the particles are embedded in. What we need as
input in our coarse-graining approach is therefore the excess
dipole moment obtained over the solvent contributions,
properly normalized with the particle number of the solution;
it is then necessary to remove the solvent contribution from the
measured overall permittivity. Replacing in eq 24 the quantity

Figure 8. Dimensionless dipole moments τ( f) for an external
electric field with strength Erms = 0.0136 Vμm−1, depending on the
frequency f of the latter. Results obtained from dielectric
spectroscopy measurements using eq 26 are shown as the solid
line, together with those obtained from the theoretical approach in
the context of the HNC approximation (blue dots) and MD
simulations (red dots). The inset shows the dielectric spectroscopy
data from which the dipole moments of the main plot have been
extracted, following eq 26.

Table 1. Dimensionless Dipole Moments τ = p/(ea)
Obtained from Integral Equations in the HNC
Approximation and MD Simulations

Erms = 0.0136 Vμm−1 Erms = 0.0227 Vμm−1

f [kHz] 100 400 900 1500 100 300 900 1500
τ (MD) 62 56 42 36 102 90 70 58
τ (HNC) 80 73 60 51 − − 95 77

Figure 9. CLSM images (upper rows) and simulation snapshots
(lower rows) of the microgel system at frequencies and electric
field strengths as indicated on the axes.
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ε′( f) with the dielectric constant of water, εw, we obtain the
polarization w due to the solvent. The difference −f( ) w is
the excess polarization due to all Nm microgel particles in the
volume V with number density ρ = Nm/V = 3ϕeff/(4πa

3). Since
each microgel has been assumed to contribute an identical
excess rms-dipole moment p, it follows:

ρ− =f p( ) w (25)

We can now obtain direct estimates for the value of τ( f) using
the experimentally determined values of the dielectric constant
ε′( f) from ref 73 and the considerations above, as

τ
ϕ

ε
ε

ε
πε

=
′

−
⎛
⎝⎜

⎞
⎠⎟f

f a
e

E( )
1

3
( ) 4

eff 0

0
2

rms
(26)

where ε ≡ εw/ε0 ≅ 80 is the relative permittivity of water.
The comparison of the dimensionless dipole moments τ( f)

obtained from our simulation and the HNC approach with
those obtained from eq 26 in conjunction with dielectric
spectroscopy73 are shown in Figure 8. Once more, very good
agreement between theory and experiments is observed,
especially at higher driving frequencies. This result is consistent
with the overall physical picture outlined in our model
approach: As the driving frequency becomes smaller, partial
screening of the dipolar interactions will take place as the
contact regions of the two microgels along the field direction
temporarily separate from one another during the intervals in
which the field is going through zero. Since we are considering
fully unscreened interactions over all the spectra under
investigation, it is not so surprising that small deviations in
the obtained dipole moments might appear for smaller
frequencies. Indeed, a perfect match between the experimental
and theoretical dipole moments at the smallest frequency f =
100 kHz and lower field strength Erms = 0.0136 Vμm−1 can be
obtained by assuming that the dipole screening length is about
90% of the monopole screening.

CONCLUSIONS
We have investigated the self-assembly properties of a system of
ionic microgels driven by the influence of an external AC
electric field. A rich variety of self-assembly structures have
been experimentally observed in this system, ranging from
string-fluid transitions along the field direction to ordered
aggregates in the perpendicular direction. Even though it is
well-known that induced dipole interactions might give rise to
chain-like formations at sufficiently strong field strengths, a
theoretical model capable of quantitatively describing these
structural features in terms of quantities experimentally
controlled is up to now still missing. By proposing a coarse-
graining approach in which the most relevant field effects are
accounted for via partially screened dipole interactions, we were
able to reproduce the experimental data within a very good
degree of accuracy, with the employment of a model system
and effective parameters that incorporate complex physical
aspects of the real system in a simple and intuitive fashion. It is
important to notice that the observed good agreement between
theory and experiments is restricted to fluid and fluid-string
regions of the phase diagram. A systematic study covering
different regions of the complex phase diagram65 is a promising
topic for future investigations.
The predictive power shown by the proposed approach can

be potentially used to investigate this system under a variety of
external conditions. In particular, the model can be applied to

predict how the various self-assembly scenarios can be tuned by
adjusting experimentally accessible quantities, therefore provid-
ing guidelines for future experimental investigations. Besides,
the model can be used to shed light on the physical
mechanisms responsible for the intriguing morphological
transitions and dynamic behavior that can be triggered by
controlling the applied field properties. This topic will be the
subject of a future investigation.

METHODS
We now briefly specify some of the numerical as well as experimental
techniques employed in this work. For further details on these topics,
we refer the reader to more specific literature on both
experimental64,65 and numerical95−101 methods.

Synthesis of Ionic Microgels and Zero-Field Character-
ization. Monodisperse ionic microgel particles having a cross-link
density of 5 mol % are used as the experimental model system in the
current study. The same ionic microgel particles were also used in our
earlier work64,65 for studying the density-dependent electric field-
induced phase behavior at a frequency of 100 kHz. Briefly, these
microgel particles were synthesized by free-radical precipitation
polymerization using N-isopropylacrylamide (NIPAM) as the
monomer, N,N-methylene-bis-acrylamide as a cross-linker, and acrylic
acid was used as an ionic co-monomer. Methacryloxyethyl
thiocarbamoyl rhodamine B (MRB) was covalently incorporated to
fluorescently label the microgel particles. Details on the synthesis
procedures can be found elsewhere.64,65

The particle size in the swollen state (at a temperature of 20 °C)
was determined using static and dynamic light scattering (DLS) at a
very dilute particle concentration using a modulated 3D cross-
correlation DLS instrument (LS spectrometer, LS Instruments,
Switzerland). From the measured intensity cross-correlation function,
the hydrodynamic radius (aH = 530 nm) was extracted using a first-
order cumulant analysis.64 A detailed description of the temperature-
dependent swelling behavior was reported previously.65

Electric Field Experiments. Electric field experiments were
carried out using fully deionized microgel suspensions at low density
(ϕeff = 0.1) in the swollen state (T = 20 °C) in chemical equilibrium
with atmospheric CO2. Particle assembly was studied using an inverted
confocal laser scanning microscope (CLSM) (Leica DMI6000 with a
SP5 tandem scanner in the resonant mode of 50 frames/s) at 512 ×
256 pixels, excitation wavelength of 543 nm, and using a 100×
immersion objective with a numerical aperture of 1.4. With this
microscope, we can get a resolution of 220 nm in x- and y-directions
and of 600 nm in z-direction. Particles with a diameter σ = 20 pixel can
be located with a subpixel accuracy of 11 nm in x- and y- and 23 nm in
z-directions. The fast resonant scanner allows us to accurately track
particles even at low concentrations in the fluid state. The samples
were contained between two cover slides separated by a 120 μm
spacer. One cover slip was coated with indium tin oxide (ITO) with a
1.56 ± 0.01 mm sample gap etched out, which ensures a homogeneous
electric field in the sample area where CLSM experiments were
performed. An AC electric field E(t) was applied in the image plane.
The field experiments were carried out by varying the frequency in a
range from 100 to 1500 kHz at three different, constant field strengths
with magnitudes Erms = 0.0136, 0.0227, and 0.0317 Vμm−1.
Observations were made at a sufficiently large distance from the cell
wall to probe bulk suspension properties.

At low ϕeff = 0.1, particles are diffusive in nature. Due to the fact
that CLSM has a poorer resolution along the z-direction and the
resonant scanner is equipped to operate only along the x−y directions,
we tracked particles in x−y plane only.89 For a given value of electric
field strength and frequency, we recorded 4000 to 5000 image frames
from x−y scans in different positions of the bulk suspension in the
plane containing the AC electric field. Image analysis was carried out
using standard algorithms,102 and the determined x- and y coordinates
were subsequently used for the calculation of the radial distribution
function along and perpendicular to the AC field direction. We
represent the pair distribution function g(r) in a spherical coordinate

ACS Nano Article

DOI: 10.1021/acsnano.7b08843
ACS Nano 2018, 12, 4321−4337

4333

http://dx.doi.org/10.1021/acsnano.7b08843


system oriented along the field. Thus, g(r,θ) is a function of the radial
distance r and the polar angle θ, with θ = 0 along the field direction.
We computed the pair distribution function via the local number
density around a given particle. For each particle, the locations of all
other particles were binned in terms of r (64 bins between 0 and rmax =
4.04 μm) and θ (11 bins between 0 and π/2). The result was averaged
over particles and frames and normalized by the area associated with
each bin. To avoid boundary effects, we did not include particles closer
than rmax to any image edge in this average. The resulting two-
dimensional (2D) number density distribution was divided by the
overall (2D) number density as computed from the CLSM images. In
the limit where the effective thickness of the imaged slice is small, our
procedure gives the same g(r,θ) as would have been obtained from 3D
data. The adequacy of this procedure had been already demonstrated
in our earlier work89 for the radial distribution function g(r), which
corresponds to the θ-average of g(r,θ). Hence, all experimental 2D g(r)
are compared with theoretical 3D g(r).
Numerical Simulations. The simulation results have been

obtained using NVT MD simulations for a system of Nm = 1000
microgels confined in a cubic box of size L = (Nm/ρ)

1/3, where ρ is the
overall microgel density. Minimal image boundary conditions have
been applied across all directions, with a cutoff distance of rc = 6a (or,
equivalently, rc = 16.75κM

−1) for the screened electrostatic interactions.
The temperature was kept fixed using a Andersen thermostat. A total
of Nstep = 4 × 106 time steps, long enough to suppress any
considerable fluctuation on the pair correlations across any direction,
has been considered. Averages were calculated by sampling
configurations over intervals of 1000 time steps after an equilibration
time of Ne = 106 time steps.
In order to be able to apply minimal image boundary conditions in

the case of long-range dipole interactions, standard Ewald summation
techniques have been applied for calculating dipolar forces in both real
and reciprocal spaces.103 To this end, a total of 729 k-vectors
isotropically distributed have been considered, along with an Ewald
parameter of α = 5/L for the real space, short-range Ewald
interactions.
The Anisotropic HNC Approach. Apart from numerical

simulation approach, the pair correlations for a given set of system
parameters have been also obtained in the framework of the
Ornstein−Zernike (OZ) equation. This equation assumes the
following particularly simple form when written in the reciprocal
Fourier space:

ρ̂ = ̂ + ̂ ̂h c h ck k k k( ) ( ) ( ) ( ) (27)

where ĥ(k) and c(̂k) are the Fourier components of the total and
direct correlation functions, h(r) = g(r) − 1 and c(r), respectively.
The symmetry of the effective pair potentials as expressed in terms

of Legendre polynomials expansion strongly suggests that the pair
correlations g(r) can be expanded accordingly as
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where θ and ϕ are the polar and azimuthal angles corresponding to the
position vector r, and Yl

0(θ,ϕ) are spherical harmonics. The above sum
is restricted to only even l values due to polar symmetry of the dipolar
interactions, and lM is the integer at which the series is numerically
truncated.
In a similar fashion, the Fourier-transformed correlations are

expressed in terms of such polar expansions as
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where now (θ′,ϕ′) represent polar and azimuthal angles corresponding
to the reciprocal vector k. The coefficients ĥl(k) are related to their
real space counterparts hl(r) by means of a Henkel transformation of
order l:

∫π̂ =
∞

h k i r h r j kr r( ) 4 ( ) ( )dl
l

l l0

2
(30)

with jl(kr) being spherical Bessel function of order l. In terms of the
coefficients for the total correlations ĥl(k) and the corresponding ones
for the direct correlations cl̂(k), the Ornstein−Zernike eq 27 can be
simplified thanks to the orthogonality relation of spherical harmonics
to

∑ρΓ̂ = ̂ ̂ + Γ̂k c k c k k C l l l( ) ( )( ( ) ( )) ( , , ; 0, 0, 0)l
l l

l l l
2

1 2 33
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where Γ̂(k) ≡ h ̂(k) − c(̂k), ρ is the overall microgel concentration,
and the symbols C l l l m m m( , , ; , , )1 2 3 1 2 3 represent usual Clebsch−
Gordan coefficients.

In order to solve the above equations, further relations between the
coefficients Γ̂l(k) and cl̂(k) are necessary. These are provided by the
closure (approximate) relations to the OZ equations. Here we adopt
the anisotropic version of the traditional hypernetted-chain (HNC)
relation. It is well-known that this closure relation is quite reliable for
the calculation of pair correlation functions in systems governed by
Yukawa-like tails. Using the expansion for the pair correlations in real
space, eq 28, the anisotropic version of the HNC equation can be
written as

∑

∑

π θ ϕ

π θ ϕ β

+

=
+

Γ −

=

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

l
Y g r

l
Y r u r

4
2 1

( , ) ( )

exp
4

2 1
( , )( ( ) ( ))

l

l

l l

l

l

l l l

0

0

0 1

0

M

M

1
1 1 1

(32)

where ul(r) are the components of the pair interaction, given by eqs
23a and 23b. From a numerical point of view, the exponential term on
the right-hand side of the above relation makes it difficult to get rid of
the angular dependences and to express direct relations between the
radial coefficients. One easy way to circumvent this problem is to use
suitable upper ladder operators L+, which raise the azimuthal m
eigenvalues up by one unity. After some straightforward manipu-
lations, we can directly relate the radial coefficients as

∑ α=
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+
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for l1 ≠ 0 and l3 ≠ 0. Here we have defined the coefficients αl(r) ≡
Γl(r) − βul(r). For numerical purposes, it is convenient to further
rewrite the above relation in a matrix form A · g = b, where A is a (lM/
2) × (lM/2) square matrix of elements
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where (i,j) ≥ 1. The lM/2 elements of the vector b are given by
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Since angular operators do not affect the zero-order terms, a second
relation between g0(r) and the remaining coefficients is still necessary
to provide a complete set of equations for the Fourier coefficients. One
way of obtaining this extra relation is by deriving both sides of eq 32
with respect to r and integrating over the angular variables. The result
is
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where we have used the fact that g0(r) → 1 when r → ∞. The above
matrix form of the HNC relations can be numerically solved together
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with eq 31 in order to specify the coefficients that determine the pair
correlation in eq 28 in a unique way. All results in this work have been
obtained by setting lM = 14, corresponding to a total of 8 independent
coefficients.
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