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Complex alloy phases for binary hard-disc mixtures 
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[Received 11 December 1992 and accepted 5 March 19931 

ABSTRACT 
We investigate the phase diagram of two-dimensional binary mixtures of hard 

discs. There are two parameters in the problem, the ratio r of the radii of the two 
discs, and the concentration p of small discs. We determine the possible phases by 
trying different periodic structures and minimizing the area per particle of the alloy 
for given r and p .  We discover over ten distinct pure phases, along with large regions 
of the phase diagram which are occupied by ‘lattice gas’ and ‘random tiling’ phases. 
The system tends to separate into two coexisting triangular lattices for rk0.5.  The 
phase diagram becomes increasingly complicated at small size ratio and large 
concentrations of small discs. 

5 1. INTRODUCTION 
The problem of packing of identical hard spheres is a well studied one. This 

question is of interest in many fields; in physics, the hard spheres may sometimes model 
atoms, and their packing arrangements can simulate atomic models of liquids and 
solids. Less is known about packing properties of mixtures of spheres or discs of two 
different sizes. 

Our system is motivated by the fact that many binary intermetallic phase diagrams 
are complicated, possessing as many as ten distinct phases at different stoichiometries. 
Hard spheres model atoms in simple metals to some extent, in that there are no strong 
constraints on which species may be nearest neighbours to other species (in contrast to 
ionic crystals), nor on the coordination number (in contrast to molecular crystals). 

At the least, sphere packings are a good guide to the ground states of atoms 
interacting with short-range potentials with sharp wells, such as a truncated Lennard- 
Jones (L-J) potential. Indeed, we will find (see $4) that the best binary sphere packings 
occur when the size ratio takes on magic values, those which allow all neighbouring 
pairs to be in contact. Manifestly, the ground states for the truncated-potential system 
will have exactly the same property. (Note that the L-J radii appropriate to a given 
system need not be additive, but it is plausible that they are in situations where there is 
little charge transfer; in that case the difference in L-J radii is determined by the size of 
the cores.) 

However, in a real metal, the ideal interatomic radii are not particularly correlated 
with the ionic sizes; indeed, in alkali metals the ionic sizes are completely irrelevant in 
determining the lattice constants, and only for the noble metals is the nearest neighbour 
distance largely determined by the ionic sizes (Ashcroft and Mermin 1976)t. 

t For a detailed discussion on the important terms in the Hamiltonian of a metal, see Ashcroft 
(1982). 
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Interactions with more distant neighbours are present, mediated through conduction 
electrons, and the effective potential may include important terms involving three or 
four atoms. 

Still, size ratios are invoked at some times as the determining factor in the 
placement of the different species within a structure, or in the stability of structure with 
respect to a competing one. If it is postulated that size ratios are essential in stabilizing a 
particular structure, then obviously the hard sphere system is the one in which size ratio 
is the most important; by considering this extreme case, we can better understand how 
sensitive the phase diagram might be to small changes in the size ratio. At the same 
time, the hard sphere system has the simplicity of being the only binary mixture system 
which can be described by just two parameters. If size ratios can produce a rich phase 
diagram in hard-sphere systems, then they are plausible candidates for the factor 
producing richness in real binary systems. In any case, the hard-sphere system is the 
simplest model we can study, in order to discover how rich the phase diagram of a two- 
component intermetallic alloy might be generically.? 

The experimental interest is mostly in random, amorphous packing (Quickenden 
and Tan 1974, Dodds 1975, Bideau, Gervois, Oger, and Troadec 1986) or else in the 
steady-state configurations produced in non-equilibrium flow or deposition processes. 
Nevertheless, knowledge of the stable disc packings is probably a useful guide to the 
nature of local order in good amorphous packings, or to the possible periodic 
attractors in a deposition model. 

In this paper, we study the periodic arrangements of discs of two different sizes, 
varying both the ratio of their radii and the concentration of the system in one of the 
components. There are two parameters in the problem: the ratio of the radii 

and the concentration of the small discs 

where r A  and rB are the radii of large and small discs, and N ,  and NB the numbers of 
large and small discs respectively. Without loss of generality, we can set rA = 1. The 
packing fraction q is defined as the ratio of the volume occupied by the discs over the 
total volume of the system. We choose to study the two-dimensional problem because 
of its relative simplicity, and because it offers us the possibility of studying a wide 
variety of periodic arrangements. 

We consider various candidate structures for each value of the size ratio and the 
concentration, and then apply the space-filling principle to determine which one is the 
most preferable. For a monodispersed system of hard discs, the arrangement with the 
highest packing fraction is the triangular close-packed (fig. l), and the corresponding 
value of the packing fraction is q = n/( 12)1/2. For a system consisting of two kinds of 
hard discs, there is always the possibility of phase separation into two close-packed 

?The structure of intermetallic alloys has been simulated by discs of two sizes in a two- 
dimensional simplification by Nowick and Mader (1965), and by computation for random 
sphere packings in two and three dimensions by Visscher and Bolsterli (1972), and many after 
them. 



Complex alloy phases for mixtures 87 

Fig. 1 

The triangular closed-packed lattice has the lowest volume per atom for a monodispersed system 
of hard discs. 

triangular lattices. However, as the size ratio decreases, we can occupy interstitial sites 
of the lattice of the large discs with one or more small discs, thus increasing the packing 
fraction. Other options, such as deforming the lattice of the large discs in order to 
accommodate small ones, are also available. Our goal here is not to construct a 
mathematical proof that these structures are optimal, but rather to explore the 
possibilities of different structures. 

In $ 2 ,  we briefly review previous results obtained from the study of binary systems 
of hard spheres and discs. In 0 3, we present our model in detail and describe the strategy 
of guessing various candidate structures. In $ 4 we determine the structures with the 
highest packing fraction as a function of r for a chosen set of number ratios p .  In $ 5 ,  we 
construct the phase diagram, and discuss its features. In $ 6, we discuss the effects of 
entropy, the relation of this work to studies in three dimensions, and the relevance of 
this work to quasicrystals. We conclude in 47. 

$2 .  PRIOR RESULTS 

2.1. Freezing of binary mixtures of hard spheres 
Recently, a considerable amount of work was done, both experimentally and 

theoretically, to study the freezing of a binary mixture of hard spheres. Although the 
structures formed at freezing are not close-packed, because the spheres are not 
touching, it seems reasonable to expect that similar structures will be important to both 
problems of freezing and packing. 

The freezing phase transition in a binary suspension of colloidal hard spheres was 
studied recently by light scattering, neutron scattering, and scanning electron micro- 
scopy (Bartlett 1990, Bartlett, Ottewill and Pusey 1990, 1992, Bartlett and Ottewill 
1991). Results were obtained for hard spheres ofdiameter ratio r=0.61,065 and 0.85. It 
was found that the fluid phase is stable up to a higher density in the binary mixture 
system than in the monodisperse system. For the case of diameter ratio r =0.61, it was 
found that the symmetry of the frozen phase depends significantly on the number 
fraction of the larger component. 

Theoretical results on this problem are also available. Thermodynamic phase 
diagrams for binary mixtures have recently been constructed (Rick and Haymet 1989, 
Denton and Ashcroft 1990, Zeng and Oxtoby 1990). The first-order freezing transition 
is treated by different varieties of density functional theory of freezing. Rick and 
Haymet considered the freezing of hard sphere mixtures of equal number fraction, and 
they concluded that the stable solid phase at all size ratios is the substitutionally 
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disordered f.c.c. structure. This is a structure where the two species of atoms occupy the 
sites of a regular f.c.c. lattice at random. Metastable solutions for different crystal 
symmetries were also found. 

Denton and Ashcroft applied the modified weighted density approximation 
(MWDA) to study mixtures of various size ratios, for the whole range of con- 
centrations. Several different structures were considered, namely the substitutionally 
disordered f.c.c. structure, the CsC1, NaCl and zinc-blende structures, and a ‘sublattice- 
melt’ structure, in which the larger atoms are localized about the sites of an f.c.c. lattice, 
while the smaller ones are in a uniform-fluid state. The phase diagram is predicted to 
evolve from a spindle type in the range 0.94 < r  < 1 to an azeotropic type in the range 
0.87 < r < 094, and finally to a eutectic type for r < 087. The disordered f.c.c. structure 
was found to be the most stable one in the range 076 < r < 1. For r <0.76, the two 
phases were found to be immiscible in the disordered f.c.c. solid, and the most stable 
structure in this region is found to be a pure f.c.c. solid composed entirely of large 
spheres. This finding is consistent with the results of the experimental study by Bartlett 
et al. However, it differs considerably from the predictions of Rick and Haymet who 
found the disordered f.c.c. solid to be the stable structure at all size ratios. The other 
structures considered were found to be either metastable for lower values of the size 
ratio (CsC1, NaCI, ‘sublattice-melt) or always mechanically unstable (zinc-blende). 

Zeng and Oxtoby used the effective liquid free energy model (ELFEM) to examine 
the freezing of a binary hard sphere mixture into a substitutionally disordered f.c.c. 
solid only. Their predictions are in general agreement with the ones from the MWDA. 
In particular, the find that for 0.93 < r < 1, the phase diagram is spindle-type, and the 
two types of spheres are found to be completely miscible over the entire range of 
concentrations. For 088 < r ~ 0 . 9 3  the phase diagram is azeotrope-type, but the two 
kinds of spheres are still completely miscible in the solid phase. For the whole region 
r < 088 the phase diagram is of eutectic type. In the region 083 < r < 0.88, the f.c.c. solid 
tends to separate. For diameter ratios r <083, stable solutions for the substitutionally 
disordered f.c.c. solid could no longer be found for the whole range of concentrations. 

2.2. Three-dimensional theoretical results 
The effect of the relative ionic sizes in the formation of crystal structures has been 

examined in the context of the properties of alkali halogenides (Pauling 1960). Pauling 
presents a detailed discussion on the effect of the relative ionic sizes on properties of the 
alkali halogenides. It is important to emphasize, however, that ionic systems are 
characterized by strong long-range Coulomb interactions rather than short-range 
ones. Therefore, the effect of the size ratio is not one of pure geometrical nature, but 
rather a combined effect of geometrical configuration and interactions between the 
ions. 

The formation of long-ranged structures in binary hard sphere systems has been 
observed in some natural gem opals (Sanders 1980). These observations motivated a 
theoretical effort, in which the space-filling characteristics of the observed structures 
were studied in more detail (Murray and Sanders 1980). The question addressed was 
how binary systems of hard spheres might order for any value of the size ratio r of the 
radii of the two spheres and for any specific concentration of large spheres, and whether 
or not this ordering is governed solely by the principle of maximization of the packing 
fraction q. It was found that a mixture of the hexagonal phase AB,  with the cubic phase 
A B , ,  is stable in the region 0-558<r<0570. Below r=0.458 a phase AB of the NaCl 
type is formed, and as both the concentration of the large ( A )  spheres and size ratio 
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decrease, other structures become possible because more small (B)  spheres can be 
accommodated in a close-packed A sublattice. In the region 0.624 < r < 1, A and B 
segregate into two close-packed monodispersed phases. Finally, AB, is likely to exist in 
equilibrium with monodispersed A or B depending on the concentration, for 
0.482 < r < 0.550 and 0550 < r < 0.624. We emphasize that this work is the most similar 
to ours; however, our calculations were made for a two-dimensional binary system, 
which offered us the opportunity of studying a larger variety of candidate structures. 

A somewhat different approach to the packing problem is one where the packing is 
defined locally rather than globally (Szeto and Villain 1987, Villain, Szeto, Minchau 
and Renz 1988). In this context, a packing of hard spheres is called dense if the space is 
filled with tetrahedra formed by mutually touching nearest neighbours. If only one 
species of hard spheres is considered, dense packings of regular tetrahedra do not exist 
because the dihedral angle of a regular tetrahedron y o  = 70.5" is not a multiple of 2n. 
However, the gaps or defects found in the packing of regular tetrahedra can be avoided 
if we introduce a second species of atoms. A simple example of such structures is the 
NaCl structure. A whole set of more complicated solutions can also be found. 

2.3. Two-dimensional theoretical results 
A detailed discussion of the problem of packing of hard discs is given by Fejes Toth 

(1964, 1972). The problem is stated as follows: suppose that we have an inexhaustible 
stockpile of all kinds of hard discs, the radii of which lie in a given interval (a, b). How 
must the discs be chosen and arranged in order to fill the Euclidean plane as densely as 
possible? A variety of packings is discovered, and the dependence of the packing 
fraction upon the size ratio and the concentrations is discussed. Some of the packings 
require discs to be chosen from two different species; others require more kinds of discs. 
We will discuss the packings that are relevant to our work in the $ 4, in the context of 
our exploration of the phase diagram. 

$3.  THE MODEL 

3.1. Dejinition of the  problem 
We consider a system consisting of hard discs of two different sizes, large ( A )  and 

small (B). The size ratio r and the concentration p of small discs are defined in eqns. (1) 
and (2) respectively. In a hard-sphere system, the important thermodynamic variable is 
the density, or its conjugate variable, the pressure P. 

.We assume that our system is in contact with a much larger system which acts on it 
as a 'pressure bath', i.e. it exerts a constant pressure P on it. Since for any hard-sphere 
system there are no interparticle interactions, the Hamiltonian is 

H=PK (3) 

where V is the two-dimensional volume V (area) occupied by the system. Without loss 
of generality, we take P =  1. We are interested here in the limit T-0, so we will ignore 
the contributions to the free energy from entropy in our calculation. 

We proceed as follows: the first stage is to construct various candidate structures. 
Here, a'ktructure' (or a 'phase') can be defined by specifying which atoms are in hard 
contact with which others, so that a 'structure' may be defined over a range of radius 
ratios r even though the interatomic bond angles and the shape of the unit cell may be 
changing. For each phase s, one can define a volume per atom us(r), as well as a number 
ratio ps.  
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0 
(pure A) 

Fig. 2 

n -- 1 

‘ B  

Method of constructing the volume per atom u against number ratio p curve for a given value of 
diameter ratio r. The B-symbols on the vertical dotted lines represent the volume per 
atom for the structure with the highest packing fraction for the specific concentration. 
The 0-symbols represent the volume per atom of other candidate structures which have 
lower packing fractions, and thus they are not considered in the construction of the u 
against p curve. Notice that the curve has to be concave up, thus its construction does not 
amount to simply connecting the W -symbols. 

Physically, for a given number fraction p ,  the minimum volume is often achieved by 
a coexistence of two phases s and s’, each of course having the same given I ,  and 
including number fractions n and n’ = 1 - n of all the atoms. In that case, the net volume 
per atom is 

u = nu,(r) + n’uJr), 

P = np,(r) + n ’ P s W  

(4 4 

(4 b) 

This optimization is simply expressed graphically in the ( p ,  u )  plane: we simply 
connect the point (p,(r), u,(r)) to the point (ps,(r), u,.(r)) by a straight line segment. The 
optimal u(p, r )  (for the given r )  is then given by taking the minimum of all such line 
segments at each p .  (We will refer to this as the ‘surviving’ phase.) 

Note that if phase s has a volume greater than that of A + B  coexistence, then it lies 
above the chord ‘ A B  in fig. 2, and the segment representing s-s‘ coexistence is always 
above the one representing A-s‘ or B-s‘ coexistence (depending on whether p,. > p ,  or 
p,. < p,, respectively). Thus such phases never need be considered. For convenience, as 
soon as we determine us@) for a given phase, we compare this with the volume of a 
coexisting mixture of the one-component A and B triangular phases, namely 

and the overall number fraction is 

u , 4 + B ( r ) - ( 1  - p ) ( 2 J 3 ) + p ( 2 J 3 r 2 ) .  ( 5 )  

This way, we eliminate phases s from further consideration for the values of r at 
which u,(r) > uA +B(r).  
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Also, we often find more than one candidate phase at the same number ratio, i.e. 
p,=p,, with u,(r) < vt(r). In such a case, the line segment from (p,, v,) to (p,., us.) is lower 
everywhere than the segment from (p,, v,) to (p,,, us,); this coexistence with phase t can 
never be optimal, and we need not consider it when performing the graphical 
construction of fig. 2. Therefore, before constructing the whole curve u(p; r), we first 
make comparisons among the pure phases s with the same p,, and keep only the one 
with minimum v, for further consideration. This reduces the number of comparisons 
that must be made at the next step. On fig. 2, the higher volume phases are marked with 
open diamonds and the minimum volume phase is marked by the filled squares. 

Finally, the volume per atom for a given r and for any value of p is determined by 
connecting the points for the chosen set by straight segments, but in such a way that the 
resulting curve is everywhere concave up (see fig. 2). Thus, the straight segments in fig. 2 
represent the volume per atom of the coexistence between the structures represented by 
their endpoints. This procedure is carried out in § 5. 

3.2. Systematics of guessing structures 
For a monodispersed system of hard discs, the highest packing is achieved by the 

triangular lattice. Filling the interstices of such a lattice consisting of large discs with 
small ones, increases the packing fraction. Whatever the configuration of the large discs 
might be (triangular, square, hexagonal etc.), there are ‘magic’ ratios, i.e. specific values 
of the size ratio for which one small disc fits exactly into the interstices of the lattice 
formed by the large discs. When the size ratio is different from these ‘magic’ values, it is 
necessary to apply a shear in the lattice in order to achieve mechanical stability, 
meaning that all the nearest neighbours are in close contact. Also, substituting one 
small disc by two (or more) in a close-packed structure, or a large disc by a cluster of 
small ones might lead to another close packed structure with a higher concentration. 
Finally, we can combine the unit cell of one structure with one or more unit cells of 
another structure, thus creating a new unit cell for a different periodic structure, 
whenever that is possible. This way, we generate a ‘random tiling’ of the plane. Thus, the 
four major techniques used here for guessing structures are: 

(i) filling interstices with small discs, 
(ii) replacing one disc by several smaller discs, 

(iii) shearing the lattice, and 
(iv) combining the unit cells of different structures. 

We now proceed to examine the various candidate structures. 

4. CANDIDATE STRUCTURES 
In this we consider candidate structures for a chosen set of number fractions p .  We 

wish to choose the structures which minimize the volume per atom, u(r, p). We consider 
a set of (simple rational) p values. For each p ,  we consider one or more periodic (single- 
phase) structures. In order to eliminate the hopeless ones, we compare v(r, p )  among our 
structures, and also compare with the volume per atom of the A + B  coexistence for 
every value of r, as explained in 9 3.1. Thus, for every r, we end up with a ‘winning’ set of 
structures at various rational p’s. In the process, we discover two kinds of phases, the 
‘pure’ phases and the ‘random’ phases. 

The pure phases exist for mixtures of a specific concentration only. Furthermore, 
there are special values of the radius ratio, where a kind of ‘optimal’ packing occurs, i.e. 
any disc (small or large) is in hard contact with all its immediate neighbours. In other 
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words, the A-A pairs are at distance 2rA, the A-B pairs are at distance rA + rg, etc. We 
call such values of r ‘magic’. Usually, a pure phase is generated by first finding the 
‘magic’ value of r, and then, for different values of r, by distorting the unit cell of the 
structure. 

On the other hand, the random phases exist for mixtures of variable concentrations, 
and fall into two subcategories, the ‘lattice-gas’ and ‘random-tiling’ phases. The former 
are characterized by the property that small discs, or clusters of small discs occupy at 
random any of the available interstitial sites of the pure A triangular lattice (see 44.8). 
The latter are built out of space-filling packings of the unit cells of different pure 
structures (technique (iv) above), but this combination occurs in a random rather than 
in a periodic fashion (see $4.9). 

The rest of this 9 is organized as follows: first, we study mixtures having the 
particular concentrations for which the pure phases exist. Then, we discuss the two 
kinds of random phases, and finally we speculate about a region of the phase diagram 

Table 1. The various alloy phases with the range of diameter ratios, the Bravais symmetry, and the figure 
where the unit cell is shown. The double horizontal lines separate the pure from the ‘lattice-gas’ 
phases, and the ‘lattice-gas’ from the ‘random tiling’ phases. For the random phases, we show all the 
possible local environments for the A and B discs. 

Condition Condition Bravais 
Phase ( A  discs) ( B  discs) Radius symmetry Fig. - 

A : 6 A  
A :  6A+ 6 8  
A :  4A +6B 
A :  4A + 6 8  
A :  6B 

A : 2 A + 6 B  
A:2A+6B 
A : 6 B  

A :4A+ 3B 
A : 4A+4B 
A :  2A +4B 

A:3A+4B 
A : 3 A + 4 B  
A:2A+4B 

A : 6 A  
A :  6A+ 12B 
A :  12B 
A :  12B 
A:O 

A : 4 A +  8B 
A:4A+8B 
A : 8 B  
A : 8 B  

A:3A+4B 

A:3A+6B 

A : 6 B  

B : 0  
B :  3A 
B : 3 A  
B : 3 A + B  
B : 3 A + B  

B : 3 A  
B : 3 A + 2 8  
B :  3A + 2B 

B :  3A 
B : 4 A  
B : 4 A  

B : 4 A  
B : 4 A + B  
B : 4 A + B  

B : 0  
B:2A+2B 
B:2A+2B 
B :  2A+ 38  
B :  3B 

B : 2 A + B  
B :  2A +2B 
B :  2A+ 2B 
B:2A+3B 

B , : 2 A + B  

B ,  : 6 B  
B,  : 2A+ 2 8  
B ,  : 6 B  

B 2 : 0  

Hexagonal 
Hexagonal 
Cent. rectangular 
Cent. rectangular 
Cent. rectangular 

Cent. rectangular 
Cent. rectangular 
Cent. rectangular 

Cent. rectangular 
Square 
Rectangular 

Cent. rectangular 
Cent. rectangular 
Cent. rectangular 

Hexagonal 
Hexagonal 
Hexagonal 
Hexagonal 
Hexagonal 

Cent. rectangular 
Square 
Square 
Square 

Monoclinic 

Hexagonal 

R;:2A+2B ( r l o , l )  Hexagonal 
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Table 1. continued 

Condition Condition Bravais 
Phase ( A  discs) ( B  discs) Radius symmetry Fig. 

TAAB,) A : 6 A  B : 0  a r ,  I )  Hexagonal 
A:6A+12B B l : 2 A + B  

A :  12B B ,  : 2A+B 

A :  12B 

B2:3B rl = 0.082 Hexagonal 15 

B,  : 3B (r ,  l r r l Z )  Hexagonal 1 6 ( 4  

B 2 : 3 B  rl,=0.233 Hexagonal 16(b) 
B ,  : 2A + 2B 

T:(AB2 - 6 )  A : 6 A  B:O (0, r1) (Hexagonal)'") 
A : 6 A + x B  B : 3 A  r ,  =0.155 (Hexagonal)'") 17(6=1) 
(0 G x < 6) 18(6=$) 

T:(AB,-,) A : 6 A  B : 0  (O, r6 )  (Hexagonal)'") 1 9 (6 = 2) 

A : 6 A  + x B  B : 2A + B r6 = 0.101 (Hexagonal)'") 
(OGxG12) 2A+2B 

20 (6 = 5) 

0 

R T[(  AB,),, (A),] A : 4A + 6 8  B : 3 A (r1, r 2 )  (Incommensurate)'") 21 (a)(y/x = 1 )  
6 A  (D=4) 22 ( y / x  = 3) 
5A+3B 
A:4A+6B B :  3A+B r,=0.281 (Incommensurate)(") 
6 A  (D=4) 
5A+ 3 8  
A : 6 B  B : 3 A + B  (r2,1) (Incommensurate)'") 21 (b)(y/x = 1 )  
4A ( D  = 3) 
2A + 38 

RT[(AB),,(A),] A : 5 A + B  B : 3 A  (TI? r4)  inc commensurate)^"^ 23 (a)(y/x = 1)  
5A+2B (D=4) 
4A+3B 
4A+4B 
6 A  
A : 5 A + 2 B  B : 4 A  r4= 0.414 (Incommensurate)@-*) 
4A+4B (D=4) 
6A 
A : 2 A + 4 B  B : 3 A  (r491) (Incommensurate)'") 23 (b)(y/x = 1)  
4A+2B ( D  = 3) 
6 A  

("'The symmetry shown refers to an ensemble-average structure. The examples in figs. 17-23 are all 

(*) For the special case y / x  = 2/ , /3 ,  the ensemble average has dodecagonal symmetry (see 0 6.3). 
monoclinic. 

which has not been systematically explored. The results are summarized in tables 1 and 
2. Table 1 shows the phases discovered, the number of discs that are in hard contact 
with a large ( A )  or small (B) disc in each one, and the underlying Bravais symmetry. 
Table 2 shows the intervals of r for which each phase (pure or random) can exist, the 
specific volume of each phase, and, finally, the intervals of r in which each phase 'wins' 
the competition among all the various phases at the same value of p only (including the 
A + B coexistence). Thus, in connection with fig. 2, for any given value of r, the phase for 
which this value lies in its 'winning' interval will be represented by a filled square, and 
the other ones with the same concentration by the open diamonds. 
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4.1. AB, mixture (p = 2/3) 
This mixture offers a good starting point because, if r is sufficiently small, we can 

form a periodic structure by putting one small disc in every interstice of a pure 
triangular A lattice. We call this phase Tl. Clearly, there is a critical radius rl  of the 
small discs, for which the small discs fit exactly into the interstices, as shown in fig. 3. 
This ‘magic’ radius is 

r 2J3 1 = O m .  
l -  3 

When rincreases beyond the value r l ,  we distort the triangular lattice so that it can still 
accommodate two small discs per unit cell, as shown in fig. 4(a). Yet, there is another 
‘magic’ radius r2, for which two small discs fit neatly into the space between large discs 
in this distorted lattice, as shown in fig. 4(b). This ‘magic’ radius is 

-3+(17)’/’ 
4 =0.281. 1,  = (7) 

If, now, r becomes larger than r2 ,  the large discs will lose contact with one another, but 
they will still be in contact with the small ones, as shown in fig. 4 (c). This unit cell can be 
repeated to fill all space, all the way up to r =  1. 

Table 2. The specific volume of the various alloy phases. The specific volume of the A + B coexistence is also 
shown for comparison. The fourth column shows the interval of r in which each of the phases has the 
lowest volume per atom, compared with the rest of the phases for the same value of p .  The double 
horizontal lines separate mixtures of different concentration of B discs. 

Phase Radius Volume per atom ‘Winning’ interval 

T,(AB,) CO,r,l 2J3/3 [O, 0 3  1 2) 
(rl,r2] 8(rZ +2r)‘/’/[3(1 +r)’] 
(r2,11 2( 1 + 2r)3!2/3 

0.3911 
HI(AB2) (rl,r3] 2[(r2+2r)112+ 1 +r]/3 [0517,0.546] 

A + B(AB,) LO, 11 2J3( 1 + 2r2)/3 (0~312,0517)~(0~546,1] 

8r(l+ 2r)3/2/[3( 1 + r)2] 

T:(AB2-,);6=1 [O,r,] J3 co> r11 
( r l ,  0.2991 

C0.392, r4] 

H Z W )  (r4,151 C(3% + K)/21‘b’ (r4, 0.438]~[0.627,0.646] 

A + B ( A B )  [0,11 J3( 1 + r 2 )  (0.299,0.392)~(0.438,0627) 

(r5911 [(2x1 + X ,  + X3)/2]@) 

u(0.646,1] 

T:(AB,-,);6=3/2 [O,rl] 4J3/3 LO, 7-11 
(rl, 0.291) 

R TC(AB), (41 (rl. r4] [8(r2 + 2r)’/’/( 1 + r)* + 2J3]/3 [0.392,0.436] 

A + B(A,B) LO, 11 2J3(2 + r2)/3 (0.291,0.392)~(0.436,1] 
(r4911 [4(r2 + 2r)‘I2 + 2J3]/3 
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Table 2. continued 
~ ~ 

Phase Radius Volume per atom ‘Winning’ interval 

T2(AB6) Co,r6l 2J3/7 [O, 0.1573 uco.3 15,0.354] 
(r6,r,] (3/7)r(1 +2r)112+(3J3/14)(1 +2r) 

( 1 7 7  11 
+ ( J3/14)r2 

[ 12rZ tan (sn/12) + 2 J3r2]/7 

A + B(AB6) co, 11 2J3( 1 + 6f2)/7 (0157,0~315)~(0~354,1] 

T:(AB6-,);6=2 [0,r6] 2J3/5 co, r61 

S2(AB4) (r6, r,] 

[r, ,  r9] 

{ [2( 1 + r)’ sin w cos w + 4r( 1 + r) sin w 
+4(1+ r )  sin 4 + 2r(l+ r) cos t]/5}(d) 

2[(1+ 2r)’/’ + r]’/5 
(r6, 0.123]~[0.193,0.245] 

A + B(AB4) LO, 11 2,/3( 1 + 4r2)/5 (0123,0~193)~(0~245,1] 

(r6,rlo) [(12sin4cos4+4,/3sinZ 4)/9](‘) (r6,0.1 lO]u[0.378,0.408] 
(rlO, 13 J3[(1 +2r)”2+,/3r]z/6 

A + B(AZB,) LO, 11 2,,/3(2 + 7r2)/9 (0.1 10,0~378)~(0~408,1] 

T,(AB,) [O, ri 11 2 J3/9 [0,0.118] 

A + B(AB,) LO, 13 2J3( 1 -t 8r2)/9 (0.1 18,1] 

(rl 1,t-12] [2J3/9(1 + F ) ~ C O S ’  #]‘I’ 

( 0 )  V, = 2(1+ 2r)3/z; 
V, = [( 1 + 3r + 2r2)(7 - 3r - 2rZ)]’/’. 

( b )  Wl = (r2 + 2r)’”; 
W z = ( r 2 + 2 r ) 1 / 2 ( 3 - 2 r - r ’ ) ( 3 r Z + 6 r -  1)/(1 +r)4. 

(‘) X ,  = (r’ + 2r)”’; 
X ,  = r( 1 + 2r)’”; 
X,={2[(rZ+2r)(1 +2r)]’’Z-r(r2+2r-1)} x [(rZ+2r-1)(1 + 2 r ) 1 / 2 + 2 r ( r 2 + 2 r ) ’ / 2 ] / ( l  +r)4. 

(d) sin 4 = ( r Z  + 2r)1/’/( 1 + r); 
cost=(I +2r)’”/(1 +r); 
ru=n/2-(24+t), (see fig. ll(b)). 
exp(i4)=[(1 +2r)’/’+ir][l +i(r’+2r)1/2]/(l +r)’, 

$+t=n/6, (see fig. 16(a)). 

(see fig. 14). 
‘n sin t = r,/3/( 1 + r); 

Fig. 3 

The phase unit cell at the ‘magic’ radius r l .  
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Fie. 4 

(4 
The TI phase unit cell for size ratio larger than r l :  (a) in the interval r1 < r  < r 2 .  (b)  at r = r z .  (c) in 

the interval r2 < r < 1. 

A different way of accommodating small discs in the space between large ones is 
shown in fig. 5 (a). In this case, the new phase, called H,, has a hexagonal unit cell, which 
contains three large discs and six small ones. The ‘magic’ radius for which this 
configuration occurs is 

r3 =0533. (8) 

When r becomes smaller than r3,  the small discs lose contact with each other, whereas 
the large ones still maintain contact, as shown in fig. 5 (b). We note that for r = r , ,  the H ,  
phase reduces to the T, phase. When r exceeds the value r3 ,  the large discs lose contact, 
as shown in fig. 5(c). 

4.2. AB mixture (p = 112) 
In the previous subsection, we found the ‘magic’ radius rl  for which we can fit one 

small disc in the interstice formed by the triangular A lattice. For this mixture, there is 
another magic ratio for which the small discs fit exactly into the interstices of a square A 
lattice, as shown in fig. 6(a) .  This magic ratio is 

r4= J2-1=0-414. (9) 

We call the phase with the square unit cell S , .  For values of r larger than rl but smaller 
than r4, the unit cell will be distorted and will have the shape shown in fig. 6 (b). We note 
that for r = r l  the S ,  phase reduces to a particular realization of the ‘lattice-gas’ Tf 
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phase (to be described below). When r exceeds the value r4 there are two ways of 
deforming the squares in order to accommodate the small discs. We can either stretch 
them in one direction, thus producing a rectangular unit cell shown in fig. 7 (a); or we 
can joint two adjacent squares together, and make the large discs in the middle lose 
contact, producing a hexagonal unit cell as shown in fig. 7 (b). We still call the phase 
with the rectangular unit cell S , ,  and we name the phase with the hexagonal unit cell 
H , .  (The Bravais symmetry for this phase is centred rectangular.) On the other hand, as 
r increases, there will be another magic ratio r5 for which the small discs of the H ,  phase 
unit cell will touch, as shown in fig. 8 (a). The value is 

r5 = 0,637. (10) 

When r increases beyond rs ,  the large discs lose contact as shown in fig. 8(b). 
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Fig. 6 

(4 (b) 
The S ,  phase unit cell: (a) a t  r'=r4. (b) in the interval r l  < r < r 4 .  

Fig. I 

(4 (b) 
(a) The S ,  phase unit cell in the interval r 4 < r  < 1. (b) The H ,  phase unit cell in the interval 

r4 < r < r5. 

Fig. 8 

(4 (b) 
The H ,  phase unit cell (a) at  r = r 5 .  (b) in the interval r5 < r <  1. 
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4.3. AB, mixture (p=6/7) 
When the concentration p exceeds the value 2/3, i.e. for mixtures of the form AB,, 

with x > 2, we find that for r sufficiently small we have to place more than one small disc 
in the interstitial space if the pure triangular A lattice. Since the open spaces of the 
triangular lattice have also triangular symmetry (see fig. l), one is tempted to examine a 
mixture for which three small discs can be placed there, and this is the AB,  mixture. As 
expected, there is again a ’magic’ size of the radius of the small discs, for which the three 
small discs fit nicely into the interstices, as shown in fig. 9(a). We call this phase T, 
phase. The ‘magic’ radius is 

r6 = 5 - 2 4 6  = 0.101. ( 1  1) 
When r exceeds the value r6, we let the unit cell expand uniformly, as shown in fig. 

9 (b). But this expansion can only continue up to the point where ’the small discs in 
adjacent triangles shown in fig. 9(b) come in touch with each other. This will happen 
when the radius of the small discs takes the ‘magic’ value 

sin (7c/12) 
1 -s in(~/12)  

r7 = = 0-349. 

When r = r7 ,  the unit cell will have the shape shown in fig. 10. We can think of this unit 
cell as being formed by dodecagons with two equilateral B triangles attached at 
opposite sides. When r exceeds the value r.,, we let the unit cell of the T, phase expand 
uniformly. 

4.4. AB, mixture (p=4/5) 
By analogy with the S ,  phase for the AB mixture, one can form here another phase 

with square Bravais symmetry, which we call S,. The unit cell is shown in fig. 11 (a), and 
the ‘magic’ radius for which this unit cell can be formed is 

r ,=0216.  (13) 
When r ,  < r < rg  we deform the S ,  unit cell by ‘squeezing’ along one of the diagonals 
and stretching along the other, thus resulting into the unit cell shown in fig. 1 1  (b). For 
r = r6 the S ,  phase reduces to a particular realization of the ‘lattice-gas’ TT phase. On 
the other hand, when r exceeds the ‘magic’ value r8, we let the unit cell of the S, phase 

Fig. 9 

(a)  (b)  
The T, phase unit cell (a) at r = r6 and (b) for r6 < I  < r, .  
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Fig. 10 

The T2 phase at the value r = 1,. The solid and dotted polygon lines show 
of the unit cell. 

Fig. 11 

two alternative shapes 

(4 (4 
The S 2  phase unit cell: (a) for r = r8 and (b)  for r6 < r < r 8 .  

expand uniformly, as shown in fig. 12 (a). This can happen until the small discs from 
adjacent squares touch. This will occur when the radius assumes the ‘magic’ value r9 

= 0.620. sin (7c/8) 
1 -sin ($3) 

r9 = 

The shape of the unit cell at r = r g  is shown in fig. 12(b). It can be thought of as an 
octagon with a square attached to one of its sides, so we have an octagonal-square tiling 
of the plane. However, this structure never materializes, i.e. it has packing fraction 
lower than the A + B coexistence (see table 2). 

4.5. A,B, mixture (p= 719) 
The A,B, mixture is another good candidate for exploring the possibility of 

forming closed-packed periodic structures, because one can form such a structure by 
replacing one large A disc in the pure triangular A lattice, by a cluster of seven small 
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Fig. 12 
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n 

(4 (b) 
The S ,  phase unit cell: (a) for r 8 < r < r 9  and (b) at r = r 9 .  The solid and dotted lines denote two 

alternative shapes of the unit cell. 

Fig. 13 

(4 (4 
The H ,  phase unit cell: (a) for r = r l 0  and (b) in the interval r l o < r < l .  

ones, as shown in fig. 13 (a). The unit cell for this structure has hexagonal shape, thus we 
call this phase H,. In order to be able to fit the cluster of small discs into the hexagon 
formed by the large ones, the diameter ratio r has to assume another ‘magic’ value, 
which we call r lO.  This value is 

r,,=0.386. (15) 

When the value of r increases beyond the ‘magic’ value r I 0 ,  we let the unit cell of H, 
expand uniformly as shown in fig. 13 (b). 

On the other hand, if the diameter ratio becomes smaller than rl0,  but is still higher 
than r6 (the ‘magic’ value below which three small discs can be placed into an interstice 
of the pure A lattice), we have to distort the hexagonal unit cell, thus forming a periodic 
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Fig. 14 

The H ,  phase unit cell for the A , B ,  mixture in the interval r 6 < r < r l 0 .  

structure with the unit cell shown in fig. 14. Referring to this fig., we note that each small 
disc in the lower left and upper right corners is in contact with the other small disc, and 
the two neighbouring large ones. As r approaches the value r6, the H 3  phase evolves 
into a particular realization of the TT ‘lattice-gas’ phase. 

4.6. AB, mixture (p = 8/9)  
We can start our search for candidate structures for this concentration, by trying to 

put four small discs into each of the interstices of the pure triangular A lattice. This can 
occur provided r does not exceed the ‘magic’ value 

r1  = 0,082, (16) 

where all small discs are in contact (with three small or one small and two large ones), as 
shown in fig. 15. We call the phase formed this way T3. 

When r becomes larger than r l l ,  we let the T3 phase unit cell expand, so that the 
small discs still touch with small and large ones, but the large ones lose contact with 
each other. Thus, the unit cell takes shape shown in fig. 16 (a) .  However, this expansion 
cannot continue beyond the point where small discs from adjacent triangles touch. This 
occurs at the ‘magic’ value: 

r1 ,=0 .233 ,  (17) 

and the unit cell looks as shown in fig. 16 (b). However, this phase never materializes, 
since its specific volume is slightly higher than that of the A + B coexistence (see table 2). 

4.7. Mixtures with concentration p > 819 
From the results obtained in this section, it becomes clear that as the concentration 

of the small discs increases, there is a sequence of decreasing ‘magic’ radii for which we 
can exactly fit more and more small discs into the interstices of the triangular A lattice, 
this achieving maximum packing. We have calculated these magic radii for one, three 
and four small discs. Realizing that the phase diagram becomes arbitrarily complicated 
at higher concentrations, we do not examine structures with a number ratio larger than 
819 w,). 
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Fig. 15 
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The T3 phase unit cell for the A B ,  mixture at  r = r l l  

Fig. 16 

(b)  
The phase unit cell for the A B ,  mixture: (a) in the interval r l  < r <  1 2  and (b) at r = r I 2 .  
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4.8. ‘Lattice-gas’ phases 
In 94.1, we found that for r < r l  we could form AB,  alloys by placing one small disc 

in each of the interstitial sites of the pure A triangular lattice, producing the TI phase. At 
the same interval for r, and for any mixture of the form AB, - ,  the interstices in the 
triangular A lattice outnumber the small discs which can, therefore, occupy any 
available site at random. The small discs, in effect, form a lattice gas on the honeycomb 
lattice formed by the interstices of the large discs. Thus, we call these phases T:(AB, 
and refer to them as ‘lattice-gas’ phases. Clearly, they can be realized for all mixtures 
which are less rich in B than AB,, when r is less or equal than r l .  The occupancy is thus 
(2-6)/2. In fig. 17, we show the unit cell of the TT(AB) phase, and in fig. 19 the unit cell 
of the T:(A,B) phase (in both figs. the small discs occupying a particular site, so as to 
make the overall pattern periodic). As r approaches r I  from above, the S ,  phase evolves 
into the particular periodic realization of TT(AB) shown in fig. 17. 

The procedure can now be generalized to mixtures more rich in B than AB,. Indeed, 
in 94.3 we produced the T, phase for the mixture AB6 by putting a group of three B 
discs into each interstice of the A lattice. For all mixtures of the form AB,  with 2 < x< 6, 
and for r<r6 ,  we can take away some of the small discs of the T2 phase. As a 
consequence, some of the interstices of the A lattice will be occupied by three B discs, 
some by two some by one, and some others will be left unoccupied. This way, we 
generate another family of ‘lattice gas’ phases which we call TT.(AB,-,) with 6<4 .  
In figs. 19 and 20 we show particular realizations of the T:(AB,) and 
TT.(A,B,) phases respectively, which will make the overall pattern periodic. These are 
the realizations into which the S ,  and H ,  phases evolve, respectively, as r approaches r6 
from above. 

It is now straightforward to think of the T;(AB8- , )  ‘lattice-gas’ phases which will 
exist for mixtures of the form AB, with 6 <x < 8 ,  and r d r l  and so on. We show the 
region in which these phases occur in the phase diagram (fig. 24). 

4.9. ‘Random-tiling’ phases 
For values of r exceeding r l ,  we can form A B , - ,  structures by combining pure A 

triangles with the AB2 unit cells. Examples are shown for the A B  mixture in fig. 21 (a) for 
r ,  < r < r 2 ,  and in fig. 21 (b) for r > r 2 ,  and for the A 2 B  mixture in fig. 22 for rl  < r < r z .  
For values of r in the interval rl < r < r2 the unit cell of the best A B ,  structure (fig. 4(a) )  
was a rhombus with edge length unity-the same length as the edge of the equilateral 
triangle which makes up half the unit cell of the pure A phase. Consequently, we can fill 

Fig. 17 

The T: phase unit cell for A B  mixtures at r = r l .  
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Fig. 18 

The T:  phase unit cell for A,B mixtures at r = r l .  

Fig. 19 

The T:  phase unit cell for AB, mixtures in the interval 0 < r < r6.  

Fig. 20 

105 

The T: phase unit cell for the A,B,  mixture in the interval O < r < r , .  
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Fig. 21 

(4 (4 
The RT[(AB,),  (A)]  phase unit cell for a periodic tiling of A B  mixtures: (a) for r l  < r < rz  and (b) 

for r > r 2 .  

Fig. 22 

The RT[(AB,) ,  (A) , ]  phase unit cell for a periodic tiling of AzB mixtures in the interval r l  < r < r z .  

all space with random tilings of rhombi and triangles. Such tilings have only sixfold 
symmetry on average, but they are topologically equivalent to random tilings of squares 
and triangles which are known to be quasicrystals with 12 fold (dodecagonal) 
symmetry (Leung, Henley and Chester 1989, Widom 1993, Oxborrow and Henley 
1993). For every square-triangle tiling, we choose one square and make an arbitrary 
choice between the two ways it can be sheared into a rhombus; having once made this 
twofold choice, the sense of shear is forced at every other square. 

On the other hand, for the case r > r,, we have a tiling of (AB,) rhombi and of (A)llz 
triangles, where the latter are now isosceles with long edge A (fig. 21 (b)). It can easily be 
checked that the only possible tilings are combinations of ‘strips’ formed by AB,  
rhombi and A triangles. Each strip is bounded by straight rows of large discs; in the A 
strip discs of the two boundary rows are touching, while in the AB,  strip they are 
separated by distances 1 between large ( A )  discs. Thus, we can make a tiling consisting 
of any sequence of strips; the structure is random in one direction only, and the entropy 
per disc is zero in the thermodynamic limit. This is not a random tiling, according to the 
definition of Henley (1991). 
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Fig. 23 

(4 
The RT[(AB),(A)]  phase unit cell for a periodic tiling of A,B mixtures: (a) in the interval 

rl < r < r 4  and (b) in the interval r 4 < r < l .  

In both cases (rl < r < r2 and r ,  < r), the ‘average lattice’ is incommensurate (Li, 
Park and Widom 1992) and can be described by projection from a space of D = 3 
(modulation in one direction) or D = 4 (modulation in two directions). The 12 fold 
quasicrystal is a special case of D = 4. In figs. 21 (a, b) and 22, we show particular tilings 
which, if repeated throughout the plane, will result into a periodic structure. The 
formation of these phases is possible for all mixtures of the form AB,-, ,  just by 
combining more and more triangles with the AB,  unit cells. Accordingly, we call 
the phases generated this way RT[(AB2), ,  ( A h ] ,  where x and y are chosen in such a way 
that the random-tiling phase has the appropriate concentration of B discs. 

triangles with the unit cell of the S ,  phase. This way we 
obtain another random tiling, called RT[(AB),, (A)y ] ,  which is possible for all mixtures 
of the form AB,  At r = r 4  this is the square-triangle random tiling (Leung, Henley 
and Chester 1989). For a periodic tiling, and for r l  < I  < r4, the R T[(AB),  (A) ]  phase for 
the A,B mixture will have the unit cell shown in fig. 23 (a), whereas for r4 < r  < 1, it will 
have the unit cell shown in fig. 23 (b). For r < r4, it is a rhombus-triangular tiling. For 
r4<r,  it is a rectangle-triangle tiling. However, in the latter case, only a one- 
dimensional randomness is possible; the only tilings are combinations of ‘strips’ formed 
by AB rectangles and A triangles. The edges of the strips are straight rows of A discs in 
contact. Again, the entropy per disc of such tilings vanishes in the thermodynamic limit, 
and these are not random tilings according to the definition of Henley (1991)t. 

We can also combine 

t We repeat that the ‘lattice gas’ and ‘random tiling’ are both inherently random phases; they 
have a non-zero, discrete entropy per disc. The distinction is that, in the ‘lattice gas’ the large discs 
are in the same place in every one of the ensemble of close-packed configurations. 
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8 5. THE PHASE DIAGRAM 
Having completed the first part of our search, which enabled us to make a selection 

among various candidate structures and reject the ‘bad’ ones, we can now proceed to 
the construction of the phase diagram in the ( r , p )  plane following the procedure 
outlined in 0 3.1. The phase diagram is shown in fig. 24. 

Not all the phases which have been found in 94 to have the lowest specific volume 
survive the final competition. In 94.9, we found that for all mixtures of the form AB, 
with x < 2, we can form ‘random tiling’ phases which we called RT[(AB,),,  (A) , ]  for 
r > r l .  We also found that in the interval r1 < r < r ,  these were true, two-dimensional 
random tilings having a non-zero configurational entropy per disc at the thermo- 
dynamic limit. These random tilings do survive, and appear in the phase diagram 
shown in fig. 24. However, in the interval r > r2 they were one-dimensional ‘pseudo- 
random tilings’ whose entropy per disc vanished in the thermodynamic limit. The latter 
phases won the initial competition in small intervals above r2  ( r ,  < r < 0.299 for the AB 
mixture and r,<r<0.291 for the A,B mixture-see table 2). However, they get 
eliminated in the final competition in favour of the TI + A  coexistence. A similar 
situation occurs in the case of the RT[(AB),,  (A),] random tilings. These random tilings 
can occur for mixtures of the form AB, with x < 1. They are true, two-dimensional 
random tilings only in the interval rl  < r < r,, and one-dimensional ‘pseudo-random 
tilings’ in the interval r4 < r <  1. Although in the initial comparison the RT[(AB) , (A)]  
tiling won in the interval 0.392<r<0.436 (see table 2), it is only in the interval 
0.392 < r < r ,  that it finally survives, because above r ,  it loses to the H 2  + A coexistence. 
Thus, the only ‘random-tiling’ phases that appear in the phase diagram are true, two- 
dimensional random tilings. 

A similar situation develops for some pure phases. In #4.5,4.6 we described the S ,  
and H 3  pure phases, and as shown in table 2 it was found that the S ,  phase for the AB, 
mixture had the lowest specific volume in the intervals r,<r<0.123 and 
0.193 < r < 0.245. It is only in the latter interval, which lies around the ‘magic’ radius r8 

Fig. 24 
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The phase diagram of the binary hard-disc mixture. The thin arrows point to the ‘magic’ radii 
discovered in 9 4; the ones denoted by the broken lines correspond to periodic packings 
which never materialize. 
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that the S, phase finally survives, however; in the former interval, it gets eliminated in 
favour of the T, + TI coexistence. A similar situation occurs for the H, phase of the 
A,B, mixture which does not survive in the interval r6 < r (01 10, where the T, + T, 
coexistence prevails again, but only in the interval 0.378 < r < 0.408, which again lies 
around the ‘magic’ radius r l 0  (see 0 4.6). Trivially, the same is true for all the cases where 
the A + B coexistence ‘wins’ over all other possible phases for a particlar concentration 
p ,  but for the same r there exists at least on other phase s which has ‘won’ for a different 
concentration pr Indeed, in that case the final result is A + s coexistence for p < p s  and 
s + B coexistence for p > pr 

In fig. 24, the heavy horizontal lines represent pure phases formed at specific values 
of the number ratio p ,  including the cases p = 0 (pure triangular A lattice) and p = 1 (pure 
triangular B lattice). The empty rectangles that are bounded above and below by the 
heavy horizontal lines represent the coexistence between the pure phases that bound 
them. The dotted regions represent the ‘lattice-gas’ phases, and the striped regions the 
‘random-tiling’ phases. Finally, the heavily dotted region in the upper left corner 
represents the ‘unknown’ region which we did not study. 

Referring to this figure, we observe that almost all of the complex alloy phases 
appear in the region r 50-5; the right-hand part of the phase diagram is dominated by 
the A + B coexistence. There are two regions covered by ‘random-tiling’ phases, one for 
the RT[(AB,),,(A),], and one for the RT[(AB),, (A),]. The ‘lattice-gas’ phases at the left 
of the phase diagram form a ‘staircase’ with decreasing width as the concentration p 
increases. The corners of the ‘stairs’ are the points ( r , ,  2/3), (r6, 6/7), and ( r l l ,  8/9). 
Although we have not examined the ‘unknown’ region, it is clear from the discussion in 
54.7 that this ‘staircase’ will penetrate into the upper left corner with the width of the 
‘stairs’ becoming smaller and smaller, probably in a self-similar way. 

0 6. DISCUSSION 
6.1. Entropy effects 

As stated in 53.1, the effects of entropy were ignored in all the calculations made thus 
far; that is we selected the ‘winning’ phases on the basis of minimization of specific 
volume (maximization of the packing fraction) only. In the cases of ‘random’ phases, 
there is a large number of structures which have the same volume V ,  and therefore (see 
eqn. (3 ) )  are degenerate at T = 0. When T > 0, entropy makes certain of these structures 
more stable than the others. We discuss such effects below. 

The first example are the ‘lattice gas’ phases. It is clear that the specific volume of the 
7’: phases is the same as that of the T, + A  coexistence. Similarly, the Tf phases have 
the same specific volume with the T, + Tl coexistence, the T: phases have the same 
volume with the T, + T’ coexistence and so on. Thus, packing considerations alone do 
not ’prefer’ one or the other. However, since the ‘lattice gas’ phases are all random 
phases, at finite temperatures there will be a non-zero, negative contribution to their 
free energy from an entropy of mixing ‘particles’ ( B  discs) with ‘holes’ (vacant interstices) 
in the underlying honeycomb lattice, and the random phases will be stabilized against 
the coexistence. 

A similar situation exists for the ‘random tiling’ phases. Indeed, it can be easily seen 
that the RT[(AB,),,(A),] phases have the same packing fraction with the T,+A 
coexistence, and the RT[(AB),, (A),] phases have the same packing fraction as the 
S, + A coexistence. Again, at T > 0 the free energy of the random phases will include a 
negative contribution from the entropy of mixing of rhombi with triangles, and they 
will prevail against the coexistence. 
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Finally, we should point out that there is yet another category of random phase, 
namely the substitutionally disordered triangular lattice, where large and small discs 
occupy the sites of a regular triangular lattice at random. Clearly, such a structure is 
always worse packed than the A + B coexistence, and we did not need to consider it 
anywhere in our discussion. However, the disparity between the packing fraction of the 
disordered triangular structure and the A + B separation becomes smaller and smaller 
as the size ratio r increases towards unity. On the other hand, the disordered phase has 
a non-zero mixing entropy per disc; thus we anticipate that at T>O there will be a 
region of the phase diagram close to r = 1 where, for all concentrations, the disordered 
triangular phase will become more stable than the A + B coexistence. The three- 
dimensional analogue of this phase is the substitutionally disordered f.c.c. phase. This is 
indeed predicted to be stable at the freezing point for sufficiently large values of r, by 
density functional theories (Denton and Ashcroft 1990, Zeng and Oxtoby 1990). 

6.2. Extension to three dimensions 
We could apply the same systematics for guessing structures outlined in 6 3.2 to 

consider candidate structures in three dimensions. In this fashion, we could obtain (at 
least) some well-known structures, such as the NaCl, CsC1, and the cubic Laves phases. 
If we try to fill interstices with small spheres (technique (i)), we will find that in three 
dimensions the interstitial holes are larger. If we consider the monodispersed simple 
cubic lattice as the ‘parent structure’, we find that the ‘magic’ radius for the CsCl 
structure, for example, is r = J 3  - 1; however, the CsCl structure is always worse 
packed than the A + B f.c.c.-f.c.c. coexistence. If we pursue technique (ii), substituting a 
single atom by a cluster, the most favourable case is surely that of an icosahedron, since 
it is much more spherical than, say a tetrahedron. This is the A B , ,  phase discussed by 
Sanders (1980) and Murray and Sanders (1980). Even in this case, the packing fraction 
is slightly worse than the A + B coexistence (Murray and Sanders 1980). In contrast, for 
comparison, the ‘two-dimensional analogue’ of the A B , ,  phase, the H ,  phase, has a 
better packing than A + B coexistence in the interval 0.378 < r < 0.408 around its 
‘magic’ radius r l 0  (see table 2). 

It would appear that our techniques for guessing structures are less fruitful in three 
dimensions that in two dimensions. Indeed, we anticipate that the three-dimensional 
phase diagram of a binary mixture of hard spheres will be less rich than the two- 
dimensional one on general grounds. Three-dimensional structures have a larger 
coordination than two-dimensional ones (12 against 6 neighbours, in monatomic close- 
packed structures). Thus, to make ‘magic’ structures, we must typically satisfy too many 
simultaneous equations. In other words, distortions that close up vacant space and 
create contacts in certain directions, tend to make the packing worse in other 
directions, around a given atom. The assertion that the three-dimensional binary phase 
diagram will be less rich is also supported by the results of the earlier work by Murray 
and Sanders (1980). The difficulties with the packing could be addressed if a third 
species of spheres were present; so it may be necessary to study ternaries in three 
dimensions. Ternaries also appear to be particularly relevant to the study of 
quasicrystals (see below). 

6.3. Relevance to  quasicrystals 
In the field of quasicrystals, since the detailed local arrangement of atoms is not 

established, hypothetical atomic arrangements are constructed and tested for local 
stability using pair potentials. The monatomic patterns which are locally stable under 
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short-range potentials (Roth, Schilling and Trebin 1990) tend to be the same as the 
good sphere packings (Henley 1986). 

The alloy systems in which quasicrystals occur tend to have complicated phase 
diagrams including a number of ordered alloys with large unit cells. In the real 
materials, interactions with distant neighbours (from the Friedel oscillations in the 
effective potentials obtained by integrating out conduction electrons) and angle- 
dependent (many-atom) terms are undoubtedly important. Still, one would like to 
understand whether this complicated behaviour requires complicated interactions, or 
whether it can be obtained with the simplest ones, i.e. hard spheres (or discs). Therefore, 
it is very useful to have toy models to describe quasicrystals, in somewhat the same way 
that the hard spheres serve as a toy model for f.c.c. crystals. 

One of our models is indeed a quasicrystal: namely, the case r =  J2- 1 and 
p = (3 - J3)/4 (Leung et al. 1989). For this value oft, the ideal close packing would be a 
coexistence of domains of all squares (AB) and domains of all triangles (A). Both 
structures have lattice constants of unity, so that boundaries between squares and 
triangles can cost nothing, and furthermore the corner angles 7c/4 and 4 6  are rationally 
related. The squares dissolve into the triangles, so that any random square-tiling has an 
equally good packing. This ensemble, which has a non-zero discrete configurational 
entropy per atom, has been shown to be a random-tiling quasicrystal (Kawamura 1991, 
Oxborrow and Henley 1993, Widom 1993). In other words, an aoerage over all 
allowed configurations has ‘quasi-long-range-order’ (i.e. algebraic diffraction peaks) at 
the Bragg points of a 12 fold symmetric quasi-periodic structure.? 

Another toy model of quasicrystal is the ‘binary tiling’, a binary system of large and 
small atoms with non-additive interaction radii. This has always been formulated in 
terms of soft (usually Lennard-Jones) potentials, although it would surely give the best 
packing for non-additive hard constraints. Again, the ground state is a random tiling 
quasicrystal, this time with tenfold symmetry (Langon, Billard and Chaudhari 1986, 
Widom, Strandburg and Swendsen 1987). 

In three dimensions a random-tiling quasicrystal would have true Bragg peaks. It 
would be highly desirable to have a toy model generalizing the ‘binary tiling’ to three 
dimensions, in terms of interacting particles, such that the ground states correspond to 
icosahedral tiling configurations. The simplest kind of interaction is a hard-sphere 
constraint. As we argued in 9 6.2, we expect the three-dimensional phase diagram of a 
binary hard-sphere alloy to be less complicated than the two-dimensional hard-disc 
phase diagram. However, it is sometimes suggested that the third species (e.g. Si in 
AlMnSi or TiMnSi) is needed in order to fit into the ‘smaller’ sites, i.e. the size ratios are 
the essential ingredient in the stabilization which is found at a special concentration. It 
may, therefore, be necessary to investigate ternaries before a suitable model can be 
found; it is particularly intriguing that good quasicrystals are all ternaries (e.g. AlCuLi, 
AlCuFe, AIPdMn). 

9 7. CONCLUSIONS 
We wished to explore how complicated the generic shape of an alloy phase diagram 

might be, and how complicated the atomic structures might be. For this purpose, we 

t A Lennard-Jones version of this system was simulated (Leung et al. 1989) but the hard-disc 
system has never been simulated: since its packing fraction is only about 1% better than phase 
separation into A and B triangular lattices, it was anticipated that it would be difficult to 
equilibrate. 
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chose hard discs as a toy model. We anticipate that if we were to use realistic potentials 
(‘realistic’ would be hard to define in two dimensions!) we would find the same 
candidate phases as were constructed in 9 4; however, their ranges of stability might be 
quite different. The most important precondition for making a realistic atomic 
structure (for short-ranged potentials) is that (i) there should be no excessively close 
atoms and (ii) there should be no large vacant volumes. Obviously, any structure with 
an optimal packing fraction will satisfy these conditions, although the converse is not 
necessarily true. Our result is non-rigorous, in that we have considered only a selected, 
finite set of structures. Nevertheless, we suspect that our phase diagram is accurate, 
since we have considered many structures that ultimately did not appear in the phase 
diagram at all. 

We discovered about ten moderately complicated alloy phases, most of them in the 
region rd0.5. Large regions of the phase diagram are occupied by random phases, i.e. 
the ‘lattice gas’ and ‘random tiling’ phases. The phase diagram becomes arbitrarily 
complicated as the concentration of small discs increases toward unity and the size 
ratio becomes increasingly small. 
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