Deep Learning for Rare Event Sampling

Sebastian Falkner,^{1*} Alessandro Coretti,¹ Phillip Geissler,² Christoph Dellago¹

University of Vienna, Faculty of Physics, 1090, Vienna, Austria
Department of Chemistry, University of California, Berkeley, California 94720, USA

Transition Path Sampling

Sampling the Path Ensemble

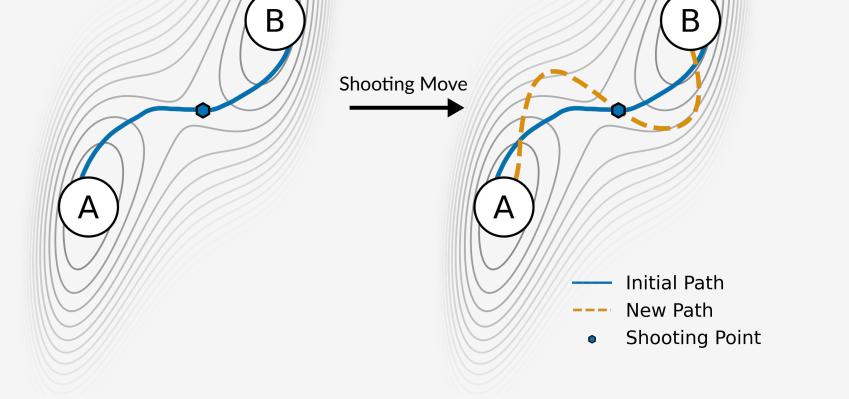
Reactive Path Sampling in Parallel

1. Sample Points

2. Integrate

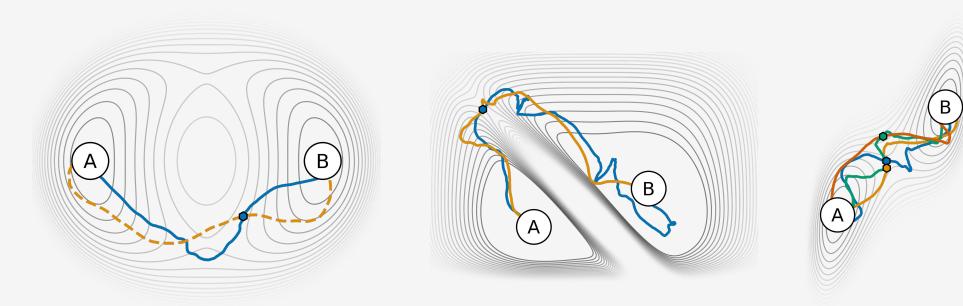
• Starting from a set of shooting points, paths can be generated in parallel

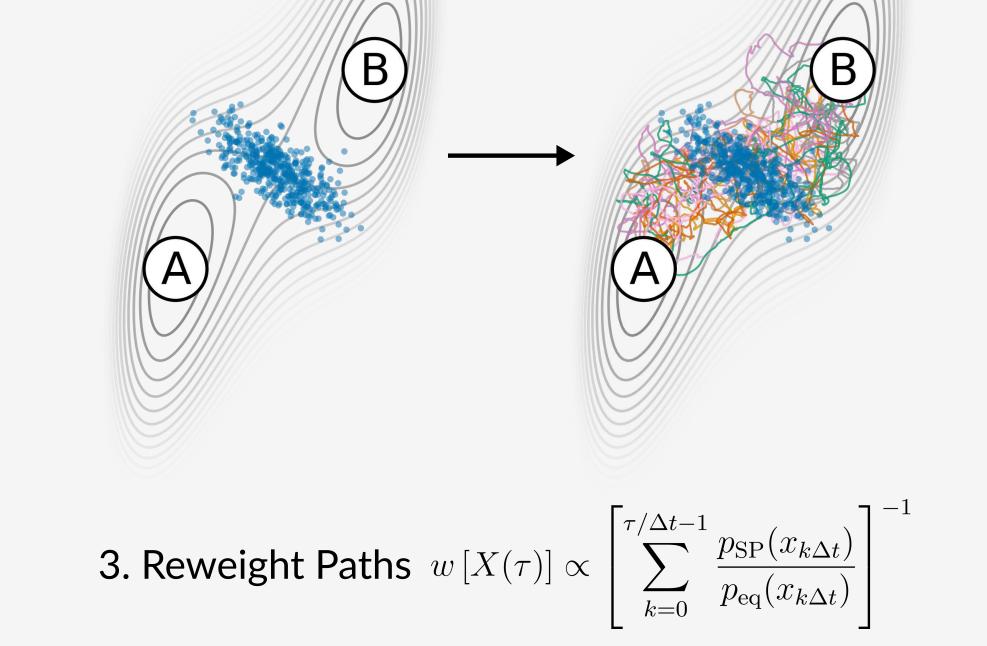
• Shooting points can be centered on regions with high probability to generate



- TPS aims at sampling the ensemble of reactive trajectories connecting stable states
- On an initial path, a configuration is randomly selected and optionally modified
- Integration is performed forward and backward in time to generate a new path
- If an acceptance criterion is fulfilled, the path is added to the ensemble and the procedure is repeated

Limitations of regular TPS

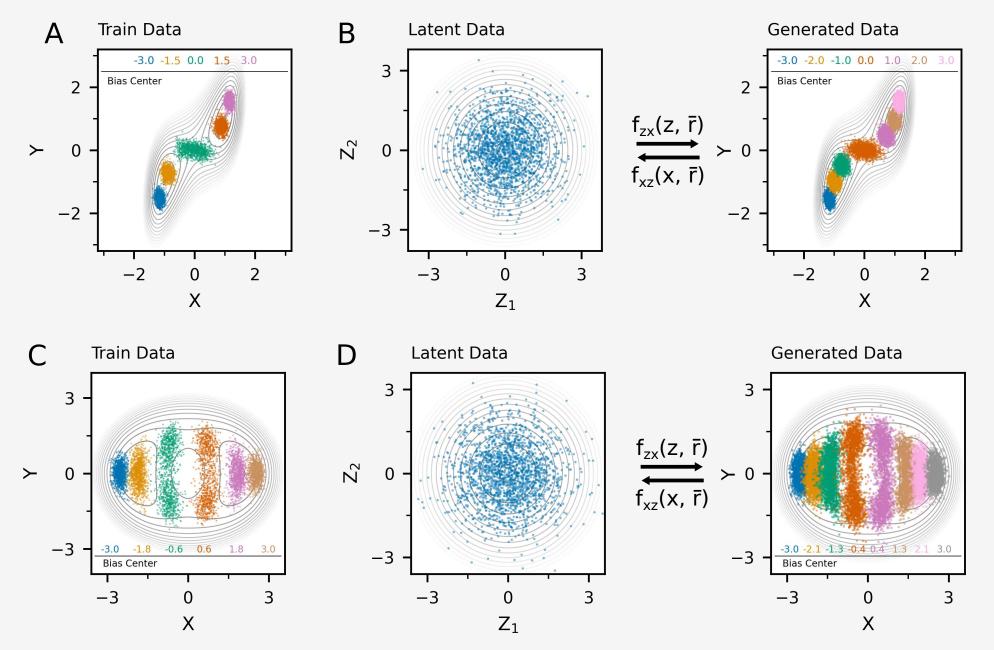




a reactive trajectory

- Less correlations between paths since they depend on correlations between shooting points
- Trajectories that dwell for a extended time in the biased region are sampled more often
- Paths can be reweighted to obtain an unbiased path ensemble

Conditioning Boltzmann Generators



- Shooting points can be sampled using generative neural networks
- Boltzmann generators have been shown to be able to generate uncorrelated configurations
- Configurations are generated via a learnable, invertible transformation

• Correlations between subsequently visited paths impact exploration of path space

• Low path generation probabilites in complex systems lead to waste of **computational resources**

Inherently sequential sampling of the path ensemble limits scalability

Biased Equilbrium Distribution:

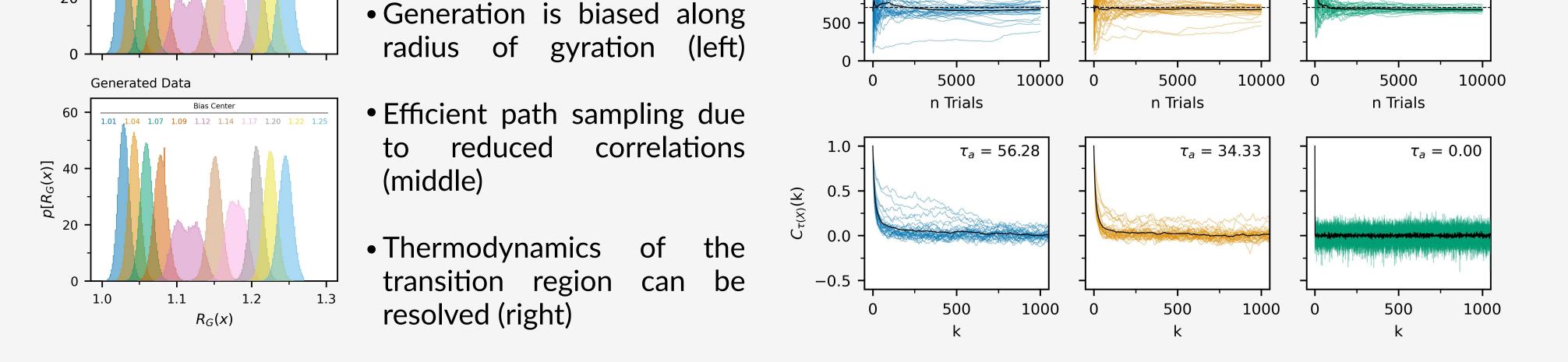
$$p_{\text{biased}}(x \mid \bar{r}) = \frac{1}{Z_{x}} e^{-\beta[U(x) + \frac{k}{2}(r(x) - \bar{r})^{2}]}$$

between the Boltzmann distribution and a latent space distribution

• Conditioning the transformation allows for biasing different regions in configuration space

 Harmonic potentials, as applied in umbrella sampling, are used for efficient biasing

Application 10.0**Standard TPS Generated SP** $(dL|\hat{x})d$ Shooting Rang — Reference — Reference 0.25 — Standard TPS — Train Data $A[R_G(x)] [k_B T]$ (x) 0.20 (x) 0.15 7.5 — Network Network 5.0 ° 0.10 μ 0.05 0.0 5000 10000 5000 10000 5000 10000 0 Train Data 0.0 0.00 n Trials n Trials n Trials • Polymer model as a complex Bias Center 60 1.2 1.2 1.3 1.1 1.0 1.11.0 1.3 **1.07 1.09** 1.12 **1.14** 1.17 1.20 **1.22** 1.2 test system for 2000 path $R_G(x)$ $R_G(x)$ 40 [*K*_G(*x*)] sampling algorithms 1500 \cdot **Transition Path** Free Energy (<u></u>) 1000 -Probability 20



References:

- Noé, F., Olsson, S., Köhler, J., & Wu, H. (2019), Science, 365(6457)
- Bolhuis, P. G., Chandler, D., Dellago, C., & Geissler, P. L. (2002), Annual Review of Physical Chemistry, 53(1), 291–318.
- Jung, H., Okazaki, K., & Hummer, G. (2017), The Journal of Chemical Physics, 147(15), 152716

*E-Mail: sebastian.falkner@univie.ac.at

University of Vienna Faculty of Physics, Computational and Soft Matter Physics Kolingasse 14-16, 1090 Wien T: +43-1-4277-73201

