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Soft nanocomposites represent both a theoretical and an experimental challenge due to the high
number of the microscopic constituents that strongly influence the behaviour of the systems. An
effective theoretical description of such systems invokes a reduction of the degrees of freedom to be
analysed, hence requiring the introduction of an efficient, quantitative, coarse-grained description.
We here report on a novel coarse graining approach based on a set of transferable potentials
that quantitatively reproduces properties of mixtures of linear and star-shaped homopolymeric
nanocomposites. By renormalizing groups of monomers into a single effective potential between
a f -functional star polymer and an homopolymer of length N0, and through a scaling argument,
it will be shown how a substantial reduction of the to degrees of freedom allows for a full
quantitative description of the system. Our methodology is tested upon full monomer simulations
for systems of different molecular weight, proving its full predictive potential. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4965957]

I. INTRODUCTION

Over the last decades, soft matter reached a paradigmatic
importance in the scientific community. Novel building
blocks, ranging from the nanoscale to the mesoscale,
have been designed; materials scientists have predicted and
developed materials with tunable properties, which can be
controlled by means of simple changes in chemical or
physical conditions. These are based on building blocks
that, under specific thermodynamical conditions, are able
to assemble into specific target structures. Amongst these,
the striking properties of soft nanocomposites, referred
here as mixtures of soft or hard colloidal particles and
linear chains in the nanoscale, suspended in a solvent,
gained an important role. Soft, polymer-based composite
materials strongly catalysed researchers’ interest in the
recent years.1–6 Their complex (chemical, physical, and
topological) composition allows for the introduction of a
set of tunable interactions between the different components
of the systems, leading to a rich panorama of observable
phases and complex aggregation properties.2,6–9 A wide
range of different dynamical (rheological) types of behavior
follows,10–12 opening the path for applications of technological
relevance.13–15 In this framework, star polymers have emerged
as archetypal examples of versatile colloidal particles.16,17

From the experimental perspective, the synthesis of star
polymers is nowadays well controlled,18 and hence they
represent a reliable model system.16,19 At the same time, from
the theoretical perspective, they stand as a unique link between
polymeric and colloidal physics: at low functionality f and low
density they resemble linear polymeric chains, while for high
values of f they can be very well described as stiff, sterically
stabilized colloids. Moreover, they display a characteristic
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ultrasoft logarithmic effective interaction,20,21 which leads to
very rich phase diagrams, for pure systems7,9,19 as well as
for mixtures of either stars and colloidal particles5,6,22 or stars
and linear polymeric chains, whose radius of gyration Rc is
at most of the same order of magnitude of the average size
of the stars Rs.23–29 Star-linear homopolymer nanocomposites
are expected to show interesting properties also for size ratios
q = Rc/Rs > 1, i.e., for polymer chains longer than the stars.
However, due to the complexity of the theoretical description,
such mixtures of stars and linear chains of arbitrary length30–32

have attracted much less attention to-date.
The purpose of this paper is to introduce a novel multiscale

coarse-graining framework, suitable for a quantitative
description of mixtures of long homopolymeric chains and
star polymers of arbitrary functionality and molecular weight.
Previous studies that focused on the realm in which the
chains were shorter than the stars23–29 employed a coarse-
graining strategy in which the whole polymer chain was
represented by a single degree of freedom, typically its central
monomer, in the spirit of, e.g., the paradigmatic Asakura-
Oosawa model of colloid-polymer mixtures.33 The latter loses
its validity fundamentally, not just quantitatively, however,
when the chains grow larger than the colloids.34 Similarly, to
systematically analyze the properties of nanocomposites made
of many monomeric units in regions of the phase space, up
to the semi-dilute regime, in which drastic departures of the
polymer conformation from an average, “soft sphere” shape
are expected, it appears essential to develop a novel coarse
graining strategy. In this approach, we employ a regrouping
of degrees of freedom that allows for a simplification of the
analysed system while retaining the ability of reproducing its
essential features as a polymer chain, i.e., as a linear succession
of building blocks, irreversibly connected to one another. To
attain such a description, we here introduce a multiscale
strategy that allows, on one hand, to retain the complexity
arising from the many body interactions between polymeric
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chains and star polymers while, on the other hand, it permits
for a drastic reduction of the number of units used to describe
the system. Hence, at the coarse-grained level, the long chain is
replaced by a succession of Nb effective monomers, or blobs,
each of which represents a small sub-part of the Nc-long
polymeric chain, each blob made of N0 = Nc/Nb monomers.
Every blob sees the star as a single, coarse-grained object; as
will be shown in Secs. II–IV, the star-blob interaction Vsb(r) is
obtained by computing, in the zero-density limit, the effective
potential between a star polymer and a short polymer chain of
length N0,which is fixed throughout the paper to be N0 = 10.
The blob-based approach proposed here permits a realistic
description of long polymeric chains, accessing information
on the conformational properties of the latter while reducing
the star to a single interaction center, hence achieving a huge
computational gain with respect to a full monomer resolved
simulation.

In what follows, after a brief description of the
numerical methods in Section II, we present in Section III a
computational derivation and a theoretical interpretation of the
zero-density star-blob potential, illuminating and rationalising
its intriguing scaling properties. Exploiting such a scaling, we
provide an approximate analytical form for the computed
effective potential, which is then proven to be valid for stars of
arbitrary size and functionality f ≫1. The formalism that will
be introduced will allow for a description of nanocomposites
made of stars of arbitrary size and polymers of arbitrary length
in the dilute and the semi-dilute regimes, hence becoming a
powerful methodology to be used to represent the system at
different densities and ratios q = Rs/Rc. The multiscale coarse
graining is then tested in Section IV against full monomer
simulations for different size ratios, by comparing the effective
potential between a star-polymer and a (long) linear chain,
Vsc(r), both computed at a monomer-resolved and at a coarse-
grained level. We find that the coarse graining method is
able to reproduce the monomer-resolved results within an
excellent degree of agreement. We summarize and draw
our conclusions in Section V, whereas some more technical
aspects of the work, related to the structural unit employed
for the coarse-graining, are discussed in the Appendix.

II. NUMERICAL METHODS

Monomer-resolved and coarse-grained simulations are
performed employing standard Langevin dynamics. The
monomer size was set as unit of length, σ = 1 [see Eq. (1)
below] and further the monomer mass m = 1, Boltzmann’s
constant kB = 1, and absolute temperature T = 1 were selected
to form the physical units of the system. The friction coefficient
was chosen to have the value γ = 1 and the Langevin equations
of motion were integrated with an elementary timestep
∆t = 10−3. We always consider the so-called “zero density
limit,” i.e., systems made of two objects, a star polymer, and a
linear chain, as a standard procedure used to compute effective
potentials. At the monomer-resolved level, we consider star
polymers made of f arms and N monomers per arm (N being
the arm length or the degree of polymerization of the star),
grafted on a central anchoring point. We first compute the star-
blob effective potential considering, as already mentioned, the

interaction of a star polymer of functionality f , and a short
chain of length N0 = 10 monomers. In Section IV, we also
consider longer chains, of length Nc.

All the monomers in the simulations are interacting
through a purely repulsive truncated and shifted Lennard-
Jones potential (i.e, good solvent conditions),

Vmm(r) =



4ϵ
(
σ

r

)12
−

(
σ

r

)6

+ ϵ, for r < 21/6σ,

0, for r ≥ 21/6σ,

(1)

where ϵ = kBT . Each neighbouring pair constituting the
backbone of each arm of the star, as well as the backbone of
the linear chains, is held together via a FENE (finite extensible
nonlinear elastic) potential

VFENE(r) =




−15ϵ
(

Rmax

σ

)2

ln

1 −

(
r

Rmax

)2
+
-

for r ≤ Rmax,

∞, for r > Rmax,

(2)

where Rmax is the maximum extension of the bond, chosen to
be Rmax = 1.5σ.

The natural choice of effective coordinates to describe the
star and the short polymer blob is the central anchoring point
of the former and the center of mass of the latter. Accordingly,
we aim at calculating the star-blob effective potential Vsb(r),
where r is the distance between the two effective coordinates.
For this purpose, we employ the Widom insertion method,35

which guarantees excellent precision at both short and large
distances, being at the same time computationally cheap and
fast. We briefly describe it here: after equilibration, every
N = 104–105 time steps, we fix a configuration of the system,
making sure that the two objects considered for the calculation
of the effective potential (star and blob) are not interacting.
We then attempt to insert one object (the short chain), moving
its center of mass at a fixed distance r from the center of the
other (the star); we choose thereby a random orientation for
the object we are moving. For every insertion at center-to-
center of mass separation r , we compute the Boltzmann factor
e−β∆U (r ), where ∆U(r) is the energy difference between the
original and the new configurations. The latter includes only
cross-interaction terms between the star and the blob, since
the reference state is the one of infinite separation between
the two, where they are not interacting with one another.
This approach allows us to calculate the inter-particle radial
distribution function as

gsb(r) =

e−β∆U(r )

Ntrials
, (3)

where the average is done over Ntrials ≈ 105 trial insertions.
We than obtain the effective inter-particle interaction potential
Vsb(r) as

βVsb(r) = − ln gsb(r), (4)

where β ≡ (kBT)−1.
At the coarse-grained level, we then consider long chains

of Nc microscopic monomers, which are composed of Nb

blobs, each one of them representing N0 monomers, so that
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Nc = N0 · Nb. As already mentioned, the star is, in this coarse-
grained level, represented as a single object, and each blob
interacts with it via the star-blob potential Vsb(r). Within the
linear chain, each blob is connected to its neighbours by a
harmonic potential

βVconn(s) = κ

2
(s − s0)2, (5)

where s is the separation between the centers of mass of two
(connected) blobs, κ = 0.11 and s0 = Rb, Rb being the radius
of gyration of a polymer chain of length N0. Moreover, each
blob interacts with any other blob, connected to it or not,
through a Gaussian steric potential36

βVsteric(s) = A exp
�
−α(s/s0)2� , (6)

where α = 1.98, A = 2.45. The parameters κ, A, and α
have been determined through an optimization procedure:
several combinations of values were tried, until a satisfactory
agreement between the interaction potential of a star of
functionality f = 50, arm length N = 50, and a linear chain
of Nc = 100 in the coarse-grained and monomer resolved
simulation was achieved, see Section IV. This choice has
proven successful for all other combinations of stars and
chains tested.

Effective potentials that will be used throughout this
work for the coarse-grained description of the homopolymeric
chain are computed via an iterative procedure for blobs that
contain N = 10 monomers. The intramolecular potentials
used to describe the chain are extracted in proximity of a
star polymer; in such a way both the intramolecular and
the chain-star many-body contributions are included in the
effective interactions. The fact that blobs only contain a few
monomers each (hence the subsegments of the chain are
off-scaling) and the influence on the effective representation
due to the presence of the star leads to a discrepancy between
the here used potentials and the ones known to well describe
homopolymeric chains;36 effective potentials have in fact, in
the present work, a shorter ranged blob-blob interaction and
a weaker tethering. Such a discrepancy arises, as depicted in
Fig. 7, from the stretching that the chain acts when the centre
of mass of the homopolymer approaches the centre of the star.
To mimic such a conformational property, the intramolecular
effective potentials computed within the star are softer than
expected. Moreover, following previous results,37 the strength
of the blob-blob interaction is reduced with respect to its
value in the absence of the star, again as a consequence of the
stretching of the chain in the star interior.

Finally, concerning the computation of the effective Vsc(r)
potentials between a star center and the center of mass of
an arbitrarily long linear chain, we have performed standard
umbrella sampling molecular dynamics simulations in both the
coarse-grained and monomer-resolved descriptions. Briefly,
we added a bias force in the system in order to improve the
sampling of the configurational space, dividing the domain of
separations r between the star center and the center of mass of
the long chain into “sampling windows.” A standard choice in
Langevin dynamics simulations is given by adding a harmonic
spring with a force f j

bias(r) given by

β f j
bias(r) = −κbias(r − r0, j). (7)

The parameters κbias and r0, j set the width and the center of
the sampling windows, respectively. The distance between the
centres of neighbouring windows is ∆rbias = r0, j+1 − r0, j. We
sample different windows in parallel, separate simulations,
setting for each one a different value of r0, j, and we compute
the biased radial distribution function g̃j(r) in each window.
We allow for an overlap between neighbouring windows,
setting ∆rbias = σ and κbias = 1. Thus, employing a standard
unbiasing procedure, we merge at the end the computed
effective interaction potential Vsc(r) by patching together the
pieces from the different windows. To this end, we add together
pieces V j

sc(r) from each window, in which the bias is removed
and a vertical shift has been performed as

βV j
sc(r) = − ln g̃j(r) − βV j

bias(r) + cj, (8)

where βV j
bias(r) = κbias(r − r0, j)2/2 is the bias potential and the

shifting constants cj are introduced to match the pieces of the
effective potentials obtained in neighbouring windows.

III. STAR-BLOB EFFECTIVE INTERACTION

We now present the results obtained for the effective
interaction between a short linear chain and star polymer and
introduce the proposed generalizable multiscale methodology
used to reproduce the effective interaction between star
polymers of arbitrary functionality and linear chains of
arbitrary length. For this purpose, the effective interaction
between a star polymer of functionality f and a linear
chain made of N0 = 10 monomers has been first computed.
This will allow us to extract an effective star-blob potential
Vsb(r) for a fixed N0, which will be then used as a building
block to represent, within an effective interaction framework,
systems made of star polymers of functionality f and linear
chains of length Nc ≫ N0. We here report the numerical
results regarding the star-blob effective interaction. The star-
blob effective potentials have been obtained numerically as
described in Section II.

In Fig. 1(a) we show the interaction potentials as function
of r/σ for star polymers of different functionality f , but same
arm length N = 50 and the short chain of length N0 = 10; it can
be seen that, as expected, the potentials get significantly more
repulsive for increasing f at fixed r/σ. Fig. 1(b) demonstrates
an interesting scaling property. If we plot the interaction
potentials as function of r/(σ

f ), a nice collapse on a unique
curve takes place, for relatively small values of r/(σ

f ),
roughly up to Rsb/(σ


f ), where Rsb = Rs + Rb, Rs being

the gyration radius of the star and Rb = 1.548σ being the
radius of gyration of the N0 = 10-short chain. For values
larger than r/σ


f , the aforementioned scaling is not valid,

thus rendering the overall size of the star the important length
scale.

Such a result opens the path for a scaling theoretical
prediction of the shape of the potential. The small r collapse
of the effective potential can be interpreted using the Daoud
and Cotton representation of a star polymer:38 for distances
r < Rs from its center, the star can be modelled as a succession
of concentric shell of Daoud-Cotton (DC) blobs of size ξ(r);
the local correlation length ξ(r) increases as we go further out
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FIG. 1. (a) Semi-log plot of star-blob
interaction potential, obtained from nu-
merical simulations, as function of r/σ
for star polymers of different function-
ality f , fixed arm length N = 50 and a
short chain of length N0= 10. (b) Semi-
log plot of the same data as in panel (a),
as function of r/σ


f .

from the center of the star as

ξ(r) ∝ r/


f , (9)

as long as the blobs are within a distance, from the anchoring
point, comparable with the radius of gyration Rs. Within the
star interior, an inhomogeneous semidilute polymer solution
is formed and the DC blob is the local correlation length
ξ(r). Accordingly, and in full analogy with colloid-semidilute
polymer interactions,39 the potential between the short chain
and the semidilute-solution DC blobs is the same for DC
blobs of the same size ξ(r), irrespective of where the latter
have their physical origin. Consider therefore two stars of
different functionalities, f1 and f2, and take the interaction of
the small chain with a DC blob of size ξ(r) in the first star
of functionality f1. Following the Daoud-Cotton model, a DC
blob of the same size ξ(r) in a star of functionality f2 will
be found at a distance r


f2/ f1 with respect to the center of

the second star. Accordingly, the free energy cost of insertion
of the short blob in the interior of the two stars fulfills the
property

Vsb(r, f1) = Vsb
*.
,
r


f2

f1
, f2

+/
-
, (10)

where we explicitly inserted the f -dependence in the
interaction potential. The implication is now a scaling property
of the latter with r and f , namely,

Vsb(r, f ) = φ(r/ f ), (r . Rs) (11)

with some function φ(x). Since this must hold for any f ,
we find that a universal function φ(r/ f ) exists for such

potentials, as long as the blob model holds. In other words,
since the short chain is a small object (its radius of gyration is
much smaller than that of the whole star), it is able to probe
the internal structure of the star. It is thus reasonable to find a
signature of the properties of the monomer distribution within
the star in the inter-particle potential, as a consequence of the
exploration done by the small probe. Finally, we stress that
this argument is valid as long as the object interacting with
the star polymer is sufficiently small with respect to Rs.

To interpret the large r behavior, we now consider the
interaction potentials as function of r/σ for star polymers
of different arm length N , fixed functionality f = 50 and the
short chain, see Fig. 2(a). We observe that for small values of
r/σ, the potentials do not appreciably depend on N , which
is another manifestation of the fact that, as long as we are
not too far away from the star center and thus the star is a
semidilute polymer solution, only the local correlation length
ξ(r) matters. The latter is expressed by Eq. (9), so that it is the
same for fixed r and for fixed f as long as r < Rs. Thus, the arm
length N at fixed functionality affects the potential only at large
r/σ, extending the range of the potential for increasing N . In
Fig. 2(b), we plot the same data as function of r/σsb, where40

σsb = 4(Rs + Rb)/3. We now find the signature of a common
scaling for values r/σsb & 1, which is in full agreement with
previous findings in which the central monomers of both
the star and the chain were employed as effective degrees
of freedom.40 Such features lead to a general prediction of
the shape of the interaction potential for arbitrary f and N
and can be exploited to obtain an approximate, analytical
form of the star-blob interaction potential. All functionalities
tested produce potentials that are well reproduced by the

FIG. 2. (a) Semi-logarithmic plot of
star polymer–short chain interaction po-
tential, obtained from numerical sim-
ulations, as function of r/σ for star
polymers of different arm length N ,
fixed functionality f = 50 and a short
chain of length N0= 10. (b) Semi-log
plot of the same data in (a), as function
of r/σsb, σsb = 4(Rs+Rb)/3.
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theoretical approach, thus allowing to extrapolate effective
potentials for stars with f ≫ 1, comparable to those used in
experimental realizations of similar systems.5,19,25 Note that
we only consider large stars, such that the scaling Rs ∼ f 1/5Nν

with the Flory exponent ν = 0.588 holds.
The collapse of the data reported in Fig. 1(b) highlights

two distinct power-law regimes, in the region r < Rsb

= Rs + Rb. The first regime, valid up to r/σ ≈


f /e, is
characterized by a very steep descent of the potential. The
second regime, valid for


f /e ≤ r/σ ≤ Rsb, shows instead a

slower decay. Finally, for r/σ > Rsb, we employ a Gaussian
function, as suggested by comparison with results obtained
previously in the literature.40 We find thereby a general
analytical expression (data fit) for βVsb(r) in the form,

βVsb(r) =




v1*
,

r
f
+
-

−b1

+ c1, for r/σ ≤


f /e,

v2*
,

r
f
+
-

−b2

, for


f /e < r/σ ≤ Rsb,

v3 exp
�
−(r − Rsb)2/(wR2

sb)
�
, for Rsb < r/σ,

(12)

where v1 = 0.0477, b1 = 8.1279, c1 = 9.0306, v2 = 3.7973,
and b2 = 2.091 have been obtained through a fitting procedure,
bound to ensure that the potential is continuous at r/(σ

f )
= 1/
√

e. The parameter v3 has to be chosen such that the
potential is continuous at r = Rsb. Last, the parameter w,
which regulates the width of the Gaussian, is obtained again
by a fitting procedure. In Figs. 3(a) and 3(b), we report
the comparison between numerical results and Eq. (12). In
Fig. 3(a) we consider stars of fixed arm length N = 50 and
functionality 100 < f < 200: fixing w = 0.12 provides an
excellent consistent agreement between the numerical and
analytical star-blob potentials for the chosen N . For stars with
longer arms, fixing w = 0.145 yields consistently an excellent
agreement with the numerical data, see Fig. 3(b). We remark
that in both cases the agreement is excellent: the methodology
proposed provides a closed, precise analytical description of
Vsb(r).

IV. VALIDATION OF THE COARSE-GRAINING
APPROACH

In order to validate the effective potentials and multiscale
methodology proposed in this paper, we performed a series

of simulations — both within a full-monomer and the coarse-
grained realization — to extrapolate effective potentials Vsc(r)
between star polymers of arbitrary f and linear chains
of arbitrary Nc. In order to simulate the hybrid star-chain
system within the coarse-grained multiscale approach, we start
from the effective potentials described in Eq. (12). Arbitrary
combinations (Nc, f ) can be chosen by simply varying the
two values f and Rsc = (Rs + Rc) ∼ f 1/5Nν + Nν

c . The choice
of a given Nc will instead be reflected on the number of
blobs (beads) used to represent the homopolymeric chain as
Nc = Nb · N0.

The striking comparison between effective potentials
obtained within the two representations is reported in Fig. 4.
Here, results obtained for fixed f = 150, two different arm
length (namely, N = 50, 100) and two different chain lengths
(Nc = 100, 200), are reported. We want to stress that the
potentials obtained within the coarse grained representation
show an excellent agreement with the monomer resolved
ones, while the drastic reduction of the degrees of freedom
grants an impressive computational gain. We can measure the
computational gain as follows: we run both simulations for
the same amount of time ∆t on the same machine, and we
compare the number of MD steps performed within such a

FIG. 3. Comparison between Eq. (12)
(lines) and numerical (open symbols)
star polymer - short chain (N0= 10) in-
teraction potentials, as function of r/σ.
(a) Star polymers of different function-
alities f , fixed arm length N = 50. (b)
Star polymers of fixed functionality f =
150 and different arm length N .
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FIG. 4. Comparison between full
monomer (open black dots) and coarse
grained (red lines) star-long chain inter-
action potential, computed with respect
to the center of mass of the chain, for
star polymers of fixed functionality
f = 150 and (a) N = 50, Nc = 100;
(b) N = 50, Nc = 200; (c) N = 100,
Nc = 100; (d) N = 100, Nc = 200.

time interval. We observe a computational gain of two orders
of magnitude: the coarse grained simulations are roughly
350-250 times faster than the full monomer ones.

Additional, strong corroboration of the validity of our
approach comes from the analysis of the shapes and of
the orientations of the chain with respect to the vector r⃗ ,
connecting the center of the star and the center of mass of the
chain. We first analyze the shapes of the chain, by computing
the gyration tensor. In Fig. 5, we report the time-averaged
largest eigenvalue of the gyration tensor of the linear chain
⟨λM

c ⟩ as function of the distance r between the center of the star
and the center of mass of the linear chain. In both full monomer
and coarse grained representations, the largest eigenvalue is
maximal when the separation between the center of the two
objects is small and decreases until it reaches a constant
value as the separation becomes larger and larger. Within the
full monomer representation, the chain, while in proximity
of the center of the star, stretches to adapt to the complex
structure of the star. This is well captured by the coarse-

FIG. 5. Main panel: time-averaged largest eigenvalue of the gyration tensor
of the linear chain ⟨λM

c ⟩ as function of the distance r between the center
of the star and the center of mass of the linear chain, in both full monomer
(black full line) and coarse grained (red dashed line) representations. Same
MD units are used in both cases. Inset: ratio between the largest eigenvalue
and the square of the radius of gyration, as function of the distance r between
the center of the star and the center of mass of the linear chain, in both full
monomer and coarse grained representations (colors as in main panel).

graining model, where we replace the star structure with a
radially symmetric effective potential. We can compare the
two representations considering the ratio between the largest
eigenvalue and the radius of gyration squared. We report this
comparison in the inset of Fig. 5. We observe now an excellent
agreement between the two results, thus confirming the
capability of our coarse-graining scheme to retain important
conformational information of the linear chain at any
separation.

We also look, as mentioned, to the relative orientation,
denoted by θ, between the eigenvectors corresponding to
every eigenvalue, from the largest to the smallest, and
the vector r⃗ connecting the star and chain centers. In the
different panels of Fig. 6, we report the distribution of cos θ
for the different eigenvectors, in both full monomer and
coarse-grained representations, at different separations. We
notice, in all cases, a very good agreement between the two
representations. For the largest and smallest eigenvalues, at
short separations the distribution is peaked around cos θ = 0;
for the other eigenvalue, the distribution is peaked around
cos θ = ±1. These distributions tells us that, in both cases,
the directions of the major and minor axis of the polymer
are favored to be perpendicular to the vector connecting the
star and chain centers, whereas the other one is favored to
be parallel. This is consistent with the following picture: the
chain is, in both representations, trying to stretch and to fit
within the star at short separations, attempting at the same time
to “embrace” it, as much as possible. At large separations, all
distributions become flat, as expected.

This analysis shows that the multi-blob-based approach
is, as a matter of fact, able to reproduce quite faithfully the
conformational properties of the chain.

Consider now a slightly different effective interaction,
between the star polymer and the linear chain, namely, the
potential V̄sc(r; f ) between the anchoring point of the star
with f -arms and the central monomer of the chain, where we
explicitly denote the dependence on f to emphasize that we
are interested in a (scaling) law to express this dependence.
Evidently, the functions Vsc(r; f ) and V̄sc(r; f ) are different,
since the effective potentials do depend on the choice of the
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FIG. 6. Distribution of the cosine of
the angle θ between the vector con-
necting the center of the star and the
center of mass of the chain and the
eigenvector associated to the ((a) and
(b)) largest, ((c) and (d)) median, ((e)
and (f)) shortest eigenvalue of the gy-
ration tensor of the chain in both ((a),
(c), and (e)) full monomer and ((b), (d),
and (f)) coarse-grained representations.
Distributions are computed for different
distances r/σ between the center of the
star and the center of mass of the linear
chain.

effective coordinates.41 Nevertheless, the two quantities are
also related, as they both represent a coarse-grained attempt to
capture the correlations between the two macromolecules. We
are interested in taking advantage of this relation with the goal
of predicting the dependence of Vsc(r; f ) on the functionality
f of the star. For this purpose, it is useful to note that a
linear chain with its central monomer as effective coordinate
is nothing else but a star polymer with two arms. The strength
of the effective interaction between the anchoring points of
two stars of functionalities f1 and f2 is predicted by scaling
theory42 to be determined by the factor

Θ f1, f2 =
( f1 + f2)3/2 −

(
f 3/2

1 + f 3/2
2

)
. (13)

Setting f1 = f ≫ 1, f2 = 2 and making a Taylor expansion of
the above expression up to linear order in the small parameter
2/ f , we obtain the scaling

Θ f ,2 � 3


f . (14)

Accordingly, the effective interaction V̄sc(r; f ) scales as

V̄sc(r; f ) � 
fψ(r), (15)

with some function ψ(r), a prediction explicitly confirmed by
computer simulations for separations smaller than the typical
size of the macromolecules.40 The underlying physical reason
for this scaling lies in the fact that for such separations,
the combination of a f -arm star and a linear chain held
at its central monomer resembles a star with a total of f + 2
arms.42 Note that in comparing the theoretical predictions with
simulation, the core size R0 of the star has to be subtracted,
since it has a finite value in the simulation but it vanishes in
scaling theory. Nevertheless, since Rs ≫ R0 for N ≫ 1, this
is only a small correction.40,42

We now consider the typical, physical configurations of
polymer chains when their center of mass lies at a separation
r from the star center which is smaller than the star size; this
is relevant for the effective potential Vsc(r; f ). In Fig. 7 we
show a characteristic snapshot of a linear chain with Nc = 200
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FIG. 7. Simulation snapshot of a star polymer with f = 100 arms with N = 50
monomers per arm, interacting with a linear chain of Nc = 200 monomers, at
a distance between the anchoring point of the former and the center of mass of
the latter r = 7 σ, corresponding to about 50% of the star size. The monomers
of the stars are rendered as grey and those of the chain as red spheres.

monomers, whose center of mass is kept fixed at a distance
r = 7σ from the center of a multiarm star. It can be seen
that the linear polymer assumes a stretched configuration,
very much akin to that of the arm of the high functionality
star. This is very similar to what happens to a chain when
its central monomer is kept fixed at a distance deep inside
the star interior. Moreover, the stretched configuration of the
chain implies that the location of the center of mass is not too
different from that of the location of the central monomer. We
surmise, therefore, that the f -scaling of the function Vsc(r; f )
is the same as that of the function V̄sc(r; f ) given in Eq. (15),
albeit with a different function describing its r-dependence,
namely,

Vsc(r; f ) � 
f χ(r). (16)

To put the prediction of Eq. (16) to a test against the
simulations, we should subtract from the distance r the
star core size R0 and choose a length scale for the star-
chain separation. Following the example of the anchoring
point-central monomer representation,40 we thus test whether
the simulation data for βVsc(r) for various parameter
combinations can be expressed in the form

βVsc(r)
f
= g

(
r − R0

σsc

)
, (17)

with some function g(x), where σsc is proportional to the
sum of the two gyration radii, σsc = 4(Rs + Rc)/3, Rc being
the gyration radius of the long chain. The value of the core
radius R0 for f = 50 has been taken from the literature,
whereas for other values of f the scaling R0 ∼


f has been

used.16 In Fig. 8(a), the interaction potentials for stars of
different functionalities f = 75,100, and 150 with same arm
length N = 100 and chains of different lengths Nc = 100 and
200 are plotted. We see that, in fact, the data collapse on
a master curve. We observe the same collapse in Fig. 8(b),
where we plot the interaction potentials for stars of different
functionality f = 75, 100, 150, arm length N = 100, 150, and
chains of length Nc = 200. On the other hand, we stress that
the collapse is valid as well in the case (r − R0)/σsc ≈ 1: this
sets the interaction range to σsc, as expected.40

Using a standard fitting procedure, we find that the scaling
function g, describing the star-long chain effective potential,
can be approximated with a very good precision as

g(x) =



γ1 exp
�
−(x/α1)β1

�
+ δ1, for x < 0.5,

γ2 exp
�
−(x/α2)β2

�
, for x ≥ 0.5,

(18)

where γ1 = 3.504, α1 = 0.476, β1 = 1.410, δ1 = −0.204,
γ2 = 1.822, α2 = 0.591, and β2 = 3.014. The values chosen
ensure that such analytical potential and its derivative are
continuous. The analytical approximation Eq. (18) is reported
as well in Figs. 8(a) and 8(b). We observe that Eq. (18) is
radically different from the star-blob approximation Eq. (4).
This is another signature of the fact that there is a limit on the
blob size, after which our coarse-graining scheme ceases to
be valid.

V. CONCLUSIONS

We have reported in this work a novel multi-blob coarse-
graining approach suitable for a quantitative description of
mixtures of soft nano-composites, made of star polymers
and linear homopolymeric chains of arbitrary functionality
and molecular weight. The coarse graining is based on the
computation of simple, soft transferable effective potentials
between a star polymer and a short linear chain and the
development of a theoretical framework that allows to build

FIG. 8. Coarse grained star polymer–
long chain interaction potential
βV (r )/ f as function r/σsc.
Symbols are data from numerical
simulations, lines are Eq. (18). (a) Star
polymers of different functionality,
fixed arm length N = 100, and chains of
different arm length: Nc = 100, 200. (b)
Star polymers of different functionality,
different arm length N = 100, 150, and
a chain of length: Nc = 200.
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up a combination of the computed potentials to reproduce
properties of star-chain systems for every combination of f ,
N and Nc.

The excellent performance of the proposed multiscale
approach, together with the vast reduction of the degrees
of freedom, grants a remarkable computational gain and a
massive simplification of the topology of the system without
any loss in accuracy, thus becoming a novel accurate powerful
tool for the study of the aforementioned nanocomposites, in
the dilute and semi-dilute regimes. It is worth noting that our
choice of N0 is not completely arbitrary, but motivated from
the goal of retaining as much details as possible on the chain
conformation. Nevertheless, the excellent results showed in
the text certainly motivate us in using this approach in such
conditions. Furthermore, the analytical form for the star-
blob interaction we introduced provides a remarkably precise
operative replacement for the effective potentials computed
numerically. Equation (12) allows to perform coarse-grained
simulations of stars of very high functionality and size,
very close to the ones typically used in experiments. The
methodology proposed in this work will, for the first time,
allow for the complete description of the star polymer/linear
homopolymer mixtures for every Rs/Rc ratio, by means of a
simple construction based on one set of transferable effective
potentials. It will thus be possible to widely explore the phase
diagram of such nanocomposites in the dilute and semi-dilute
regimes, with a direct link to the real experimental systems.
Finally, the proposed coarse-graining strategy opens up the
way for efficient modeling of concentrated solutions of soft
colloids and long chain deep into the semi-dilute regime,
in which nontrivial phenomena, as dynamical arrest and the
emergence of strong correlations between the constituent of
the system, are expected.
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APPENDIX: STAR-MONOMER EFFECTIVE
INTERACTION

We report shortly here an interesting, although unsuc-
cessful, coarse-graining scheme for star-chain mixtures. This
alternative approach aims to retain the microscopic details
of the chain, while considering the star as a single, coarse-
grained object. In other words, at the coarse-grained level the
beads of the chain interact with the star through an effective
star-monomer potential Vsm(r). This star-monomer effective
interaction has been calculated numerically as described in
Section II. Similarly to Vsb(r), we compute the interaction
for stars of different functionalities and different arm lengths;
results are reported in Fig. 9. It can be seen that in both
Figs. 9(a) and 9(c) the curves are very similar to the results
shown in Figs. 1(a) and 2(a). We have also performed the
same analysis done with the star-blob effective interaction; we
report the results in Figs. 9(b) and 9(d). Again, the results are
very similar to those reported in Figs. 1(b) and 2(b), as the
theoretical arguments reported in Section III still hold in this
extreme case.

Finally, we report the comparison of the star-chain
effective potentials Vsc(r), as done in Section IV. In Fig. 10 we
report the comparison between a star of functionality f = 50
and arm length N = 50 and linear chains of different lengths.
It can be seen that the agreement between coarse-graining
and monomer-resolved results is rather poor, especially for
the two longer chains tested, Nc = 50 and Nc = 100. In these
cases, the coarse-graining vastly overestimates the interaction
potentials. An explanation for this poor comparison can be
formulated as follows. The insertion of a monomer in the
semidilute interior of the star brings forward a disturbance
of the star profile, which extends over a range of the local
correlation length ξ(r). The separation between two successive
monomers in the chain is, of course, smaller than ξ(r), so that
the effect of introducing, say, a dimer in the interior of
the star is overestimated if we make the assumption of the
superposition of the effects of the individual monomers. Once
a monomer has been introduced, it has created a disturbance of
the star profile around it, and the second can be accommodated

FIG. 9. (a) Semi-log plot of star-
monomer interaction potential, as func-
tion of r/σ for star polymers of dif-
ferent functionality f and fixed arm
length N = 50. (b) Semi-log plot of the
same data in left panel, as function
of r/σ


f . (c) Semi-log plot of star-

monomer interaction potential, as func-
tion of r/σ for star polymers of differ-
ent arm length N and fixed function-
ality f = 50. (d) Semi-log plot of the
same data in left panel, as function of
r/σsm.
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FIG. 10. Star polymer–linear chain in-
teraction potential, for star polymers
of fixed arm length N = 50 and fixed
functionality f = 50, and linear chains
of different length: (a) Nc = 10, (b)
Nc = 20 (c) Nc = 50, (d) Nc = 100.
Black dots refer to results obtained from
monomer-resolved simulations, full red
lines refer to results obtained from
coarse-grained simulations.

with less additional disturbance than what the superposition
approximation assumes. By coarse-graining the star as a single
object for the interaction with a succession of monomers,
we are, however, making precisely this approximation,
ascribing to the star a stronger deformation than it actually
has and thereby overestimating the effective star-chain
interaction.

When we consider a short linear chain of N0 = 10 as the
fundamental building block of a coarse-grained chain, two
successive blobs are separated by a distance of the order ξ(r)
and thus the overall rearrangement caused by two successive
blobs will be very well approximated by the superposition
approximation. In fact, both the star and the chain can
rearrange to accommodate one into the other, and the energetic
cost per monomer will be smaller with respect to the free
monomers. From the perspective of the effective interaction,
the final outcome will be a softer interaction potential,
compared to superposition of star-monomer contributions,
resulting from this approach. The crucial ingredients missing
here are of course correlations, arising from the organization
of the monomers in the linear chain inside the same Daoud-
Cotton blob.
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