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*S Supporting Information

ABSTRACT: We present computer simulations of concen-
trated solutions of unknotted nonconcatenated semiflexible
ring polymers. Unlike in their flexible counterparts, shrinking
involves a strong energetic penalty, favoring interpenetration
and clustering of the rings. We investigate the slow dynamics
of the centers-of-mass of the rings in the amorphous cluster
phase, consisting of disordered columns of oblate rings
penetrated by bundles of prolate ones. Scattering functions
reveal a striking decoupling of self- and collective motions.
Correlations between centers-of-mass exhibit slow relaxation,
as expected for an incipient glass transition, indicating the dynamic arrest of the cluster positions. However, self-correlations
decay at much shorter time scales. This feature is a manifestation of the fast, continuous exchange and diffusion of the individual
rings over the matrix of clusters. Our results reveal a novel scenario of glass formation in a simple monodisperse system,
characterized by self-collective decoupling, soft caging, and mild dynamic heterogeneity.

Over the last years, the fascinating properties of ring
polymers have attracted the interest of researchers in the

broad disciplines of physics, chemistry, biophysics, and
mathematics.1−8 The simple operation of joining permanently
the two ends of a linear chain, forming a ring, has a dramatic
impact on its structural and dynamic properties. This includes
differences with linear chains in, e.g., their swelling,9

rheological,10 or scaling behavior.11 Another remarkable effect
of the ring topology is the non-Gaussian character of the
effective potential in solution,12,13 in contrast to the well-known
Gaussian potential found for linear chains.14

The use of effective potentials reduces real macromolecular
solutions to effective fluids of ultrasoft, fully penetrable
particles.14−17 This methodology facilitates the investigation
of the physical properties of polymers in solution. The
investigation of tunable generic models of ultrasoft particles,
inspired by the bounded character of the real effective
interactions in polymer solutions, offers a route for discovering
and designing novel soft matter phases with potential
realizations in real life. For a family of generic models, the
so-called Q±-class,18,19 in which the Fourier transform of the
bounded potential is non positive-definite, the ultrasoft particles
can form clusters. At sufficiently high densities the fluid
transforms into a cluster crystal.18,19 However, the approach
based on effective potentials derived at inf inite dilution has
severe limitations at high concentrations due to the emergence

of many-body forces arising, e.g., from particle deformations.
This has been recently demonstrated for the case of flexible ring
polymers.12

In recent work, some of us have extended the study of ref 12
to the case of semif lexible rings.20 Unlike in flexible rings, the
presence of intramolecular barriers makes shrinkage energeti-
cally unfavorable. If semiflexible rings are sufficiently small,
their size is only weakly perturbed.20 This may facilitate
interpenetration and promote clustering to fill the space in
dense solutions. This was not the case for very small rings due
to excluded-volume effects or for sufficiently long ones in which
the expected random arrangement of the centers-of-mass was
recovered. However, in a certain range of molecular weight an
amorphous cluster phase was found, consisting of disordered
columns of oblate rings penetrated by bundles of prolate rings
(see Figures 12 and 13 in ref 20). This novel cluster phase
emerges in a real, one-component, polymer solution with purely
repulsive interactions.20 This finding is crucially different from
other soft matter cluster phases where clustering is mediated by
short-range attraction and long-range repulsion.21 Although
clustering of the rings was predicted by the obtained effective
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potential, the anisotropic character of the real clusters was not
captured by the isotropic effective interaction, which did not
incorporate the relative orientation between rings as an
additional, relevant degree of freedom.20

Recent simulations of a polydisperse (preventing crystal-
lization) generic fluid of ultrasoft, purely repulsive particles of
the Q±-class have revealed the possibility of forming a cluster
glass.22 Whether this dynamic scenario may find a realization in
a real polymer solution is an open question. Apart from the
eventual inaccuracy of the ultrasoft potentials to describe real
structural correlations at high concentrations (see above),
predictions on the dynamics can be misleading. Even by using
the correct mean-force potential describing exactly the static
correlations, the real dynamics can be strongly influenced by
the so-called transient forces,23 related to the removed
intramolecular degrees of freedom and not captured by the
mean-force potential.
Motivated by the emergence of the anisotropic cluster state

in dense solutions of semiflexible rings, in this letter we
investigate the associated dynamics in this phase. We find a
striking decoupling of self- and collective motions. As expected
for an incipient glass transition, correlations between centers-
of-mass exhibit slow relaxation, reflecting the dynamic arrest of
the cluster positions. However, self-correlations relax at much
shorter time scales. This feature is a manifestation of the fast,
continuous exchange and diffusion of the individual rings over
the quasi-static matrix of clusters. Our results reveal a novel
dynamic scenario for glass formation in a real, simple
monodisperse system, characterized by the simultaneous
presence of self-collective decoupling, soft caging, and mild
dynamic heterogeneity.
We simulate NR = 1600 unknotted nonconcatenated bead−

spring rings of N = 50 monomers. We use the monomer
excluded-volume and bonding potentials of the Kremer−Grest
model,24 and implement bending stiffness.20 We investigate the
density dependence of the dynamics at fixed temperature T = 1
(in units of the model20,24). Model and simulation details are
extensively described in ref 20 (here we use a friction γ = 2,
instead of γ = 0.5 used in ref 20 for efficiency of equilibration).
From simulations without excluded volume of the linear
counterparts,25 we have estimated a characteristic ratio26 C∞ ∼
15. This is a value typical of common stiff polymers.26 By
simple scaling, we expect to find similar trends for biopolymers
(C∞ ∼ 100) if we use a similar ratio N/C∞. Moreover, since a
bead in our model can be understood as a coarse-grained scale,
our results are expected to be valid for more complex systems
such as, e.g., toroidal microrings or cyclic polymer brushes,
which can be currently synthesized.27,28

By focusing on the structure and dynamics of the centers-of-
mass of the rings, we use the average diameter of gyration at
infinite dilution, Dg0, to normalize the density of the ring
solution. Thus, we define the density as ρ = NR(L/Dg0)

−3, with
L being the simulation box length. For N = 50 we find Dg0 =
13σ, with σ = 1 as the monomer size.20 We explored a
concentration range from ρ → 0 to ρ = 20. The value ρ = 20
corresponds to a monomer density of ρm = 0.45, about half the
melt density in similar bead−spring models.24

Figure S1 in the Supporting Information shows results for
the radial distribution function g(R) of the centers-of-mass of
the rings, at different densities. Clustering at high densities is
evidenced by the increasing maximum of g(R) at zero distance.
Figure 1 shows results for the static structure factor of the
centers-of-mass, S(q) = NR

−1⟨∑j,k exp[iq·(Rj(0) − Rk(0))]⟩,

with Rj,k denoting positions of the centers-of-mass. By
increasing the concentration, S(q) develops a sharp maximum
at wavevector qmax ∼ 0.4. This corresponds to a typical distance
between centers-of-mass of d ∼ 2π/qmax ∼ 16. This is slightly
higher than the typical diameter of gyration in the whole
investigated density range (12.4 < Dg < 13.6).20 In simple
liquids the main peak is followed by a pronounced minimum
S(qmin) < 1 and higher-order harmonics.29 Instead, we find a
nearly featureless, smoothly decaying shoulder extending up to
large q-values. This reflects the full interpenetrability of the
rings at short distances. The inset of Figure 1 shows the peak
height S(qmax) (squares) versus the density. The slope of
S(qmax) exhibits a sharp crossover at ρ ∼ 10. We identify this
feature as the onset of the cluster phase. The maximum of S(q)
exhibits remarkable features. Thus, it reaches values of up to
S(qmax) ∼ 20 at the highest investigated densities. However,
these are not accompanied by crystallization, as would be
expected by the Hansen−Verlet criterion for simple liquids.30

Although the effective potential does not fully capture all details
of the cluster structure (in particular its anisotropic
character20), Figure 1 reveals a key feature of cluster-forming
fluids of fully penetrable objects.18,19 Namely, the wavevector
qmax ∼ 0.4 for the maximum of S(q) (circles in the inset) is
essentially density-independent in the cluster phase. Thus,
adding rings to the system does not modify the distance
between clusters (d ∼ 2π/qmax) but just their population.

18,19

Now we investigate the slow dynamics of the rings in the
cluster phase. In standard molecular and colloidal fluids close to
a glass transition,31 particles can be mutually trapped by their
neighbors over several time decades. This is the well-known
caging effect, which leads to a plateau in the mean-squared
displacement (MSD, ⟨Δr2⟩) versus time t. The temporal extent
of the caging regime increases on approaching the glass
transition (usually by increasing density and/or decreasing
temperature). At longer times, particles escape from the cage
and reach the diffusive regime ⟨Δr2⟩ ∝ t. Figure 2a shows the
MSD of the centers-of-mass at different densities up to the
highest investigated one. Data are normalized by Dg0

2 to show
displacements in terms of the typical ring size. In all cases,
displacements at the end of the simulation correspond to
several times the ring size. Within the investigated concen-
tration range, no plateau is found in the MSD. A soft caging
effect is observed, which is manifested as an apparent
subdiffusive regime ⟨Δr2⟩ ∼ tx, with x < 1 decreasing by

Figure 1. Static structure factor S(q) of the centers-of-mass (main
panel), for different densities (see legend). Data are represented vs the
reduced wavevector qDg0. The inset shows the density dependence of
qmax (circles) and S(qmax) (squares), where qmax is the absolute
wavevector at the maximum of S(q). Both qmax and S(qmax) are
estimated by fitting the main peak to a Gaussian. The corresponding
error bars are smaller than the symbol sizes in the inset.
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increasing concentration. The crossover to diffusive behavior is
found, in most cases, when displacements approach the typical
ring size, ⟨Δr2⟩ ≲ Dg0

2 . However, this is not the case for the
highest investigated density ρ = 20, where a crossover to an
apparent second subdiffusive regime is found, persisting at least
up to values of ⟨Δr2⟩ = 5Dg0

2 . The eventual crossover to
diffusion is beyond the simulation time scale.
Figure 2b shows the density dependence of the diffusivity, D,

of the centers-of-mass of the rings. This is determined as the
long-time limit of ⟨Δr2⟩/6t, for the densities at which the linear
regime ⟨Δr2⟩ ∝ t is reached within the simulation time scale. A
sharp dynamic crossover is found at ρ ∼ 10, i.e., around the
density for the onset of the cluster phase (Figure 1). This
crossover is characterized by a much stronger density
dependence of the diffusivity in the cluster phase (ρ > 10)
and, as we discuss below, a decoupling of self- and collective
motions. In the investigated density range of the cluster phase,
we find an apparent exponential law D ∼ exp(−0.35ρ), which
may suggest activated dynamics. Still, this conclusion must be
taken with care because of the limited range of observation
(one decade in diffusivity).
Further insight into the dynamics can be obtained by

computing scattering functions of the centers-of-mass.
Normalized coherent and incoherent functions are defined as
Fcoh(q,t) = [NRS(q)]

−1⟨∑j,k exp[iq·(Rj(t) − Rk(0))]⟩ and

Finc(q,t) = NR
−1⟨∑j exp[iq·(Rj(t) − Rj(0))]⟩, respectively.

Coherent functions probe pair correlations between centers-of-
mass of the rings, whereas incoherent functions probe self-
correlations. Figure 3a shows results for both functions at the

highest investigated density ρ = 20 and for several
representative wavevectors. Comparison between data sets
reveals an unusual result: the incoherent functions relax in
much shorter time scales than their coherent counterparts.
Only in the limit of large wavevectors q ≫ qmax, where no
collective correlations are really probed, both functions trivially
approach each other. We illustrate this effect by representing,
for ρ = 20, the q-dependence of the relaxation times τ of the
scattering functions (see Figure S2 in the Supporting
Information). These are defined as the times for which
Fcoh,inc(q,τ) = e−1. Figure 3b shows, for fixed wavevector q =
0.39 ≈ qmax, coherent and incoherent scattering functions at
several densities. In Figure 2b we show the density dependence
of the respective inverse relaxation times, τcoh,inc

−1 . As can be seen,
the time scale separation between coherent and incoherent
functions is associated with the onset of the cluster phase at ρ ∼
10 and becomes more pronounced by increasing the density.
Within the whole investigated range, the incoherent inverse

Figure 2. (a) MSD of the centers-of-mass (solid lines), normalized by
Dg0

2 , for different densities (see legend). Dashed lines describe
approximate power-law behavior ∼ tx (exponents given in the
panel). (b) Density dependence of the diffusivity, D, and inverse
relaxation times, τ−1. Some typical error bars are given. Closed circles:
D normalized by Dg0

2 . Open symbols: τ−1 for the coherent (squares)
and incoherent (triangles) scattering functions at q = 0.39. Left and
right ordinate axes correspond to data of D/Dg0

2 and τ−1, respectively.
Both ordinate axes span over the same factor 2 × 104 for a fair
comparison between different data sets. The dashed lines indicate
apparent exponential dependence D, τ−1 ∼ exp(−Γρ). Values of Γ are
given in the panel.

Figure 3. Scattering functions for the centers-of-mass of the rings.
Symbols and lines correspond to coherent and incoherent functions,
respectively. (a) Results for the highest investigated ρ = 20 and
different q-values. (b) Results for fixed q = 0.39 ≈ qmax and different
densities. In each panel, two data sets with identical colors correspond
to the coherent (symbols) and incoherent (line) function for the same
value of q (in panel (a)) or ρ (in panel (b)); see legends.
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relaxation times follow the same density dependence as the
diffusivity (note that both ordinate axes in Figure 2b span over
the same factor 2 × 104 for a fair comparison between different
data sets). In the cluster phase the inverse coherent times
follow a much stronger dependence, with an apparent
activation energy of about twice that of the diffusivity and
incoherent inverse time.
Figure 3 demonstrates that collective correlations slow down

by increasing density, reflecting the arrest of the cluster
positions. This is the signature of an incipient glass transition.
However, unlike in simple glass formers, this is not
accompanied by a similar arrest of the self-motions, which
exhibit a much faster relaxation. This reflects that fast,
continuous exchange and diffusion of the rings takes place
over the slowly relaxing matrix of clusters. This is consistent
with the soft character of the caging regime in the MSD (Figure
2a). As discussed in ref 20, clusters are not formed in the limit
of small and large rings. In Figure S3 of the Supporting
Information we show results for g(R) and S(q) in the former
two limits of noncluster forming rings (highest investigated
densities for N = 20 and 100 in ref 20). Figure S4 of the
Supporting Information shows the corresponding scattering
functions. No decoupling is observed there. This further
supports the intimate relation between the formation of the
cluster phase and the decoupling of self- and collective motions.
The small differences between coherent and incoherent
functions in the noncluster forming systems can be roughly
understood by simple de Gennes narrowing,29 τcoh/τinc ∼ S(q)
(see Figure S5 in the Supporting Information). This is clearly
not the case in the cluster phase (see Figure 4), confirming the
highly nontrivial nature of the observed decoupling.

The dynamic scenario observed for real semiflexible rings, in
the cluster phase, exhibits strong similarities with results in
cluster glass-forming fluids of generic fully penetrable ultrasoft
particles.22 These include the crossover in the diffusivity to
apparent activated behavior and the decoupling between
coherent and incoherent dynamics in the cluster phase.
Interestingly, the scenario observed for the semiflexible rings
also has analogies with the dynamics in two-component
systems with very strong dynamic asymmetry32−34 and more
generally in crowded environments,35 even if clustering and
penetrable (“ultrasoft”) character may be absent in such
systems.32,33 Subdiffusive regimes in the MSD of the fast
particles are usually observed in such mixtures, extending up to

distances much larger than the particle size. The trend in Figure
2a for ρ = 20 resembles this feature. Decoupling of self- and
collective dynamics in the mentioned mixtures is found for the
fast component (“tracer”). The tracers perform large-scale fast
diffusion along paths spanning over the confining matrix
(formed by the slow component). Because of the slowly
relaxing character of the matrix and the paths, collective
correlations between the tracers decay in a much slower fashion
than the self-correlations.32−34

The results presented here for cluster-forming semiflexible
rings constitute a novel realization of this decoupling scenario.
First, it takes place in a real monodisperse system. This feature is
intimately connected to the fully penetrable character of the
rings, which can behave both as fast “tracers” moving from one
cluster to other and as part of the slow “matrix” formed by the
cluster structure. Second, it is not connected to the presence of
strong dynamic heterogeneities, unlike in the mentioned
dynamically asymmetric mixtures32−34 where a clear distinction
between “fast” and “slow” particles exists. One might still think
of a small fraction of rings performing much faster dynamics
than the average, as a sort of “defect diffusion”. If this were the
case the van Hove self-correlation function Gs(r,t) of the
centers-of-mass would show, at long times, a strongly localized
sharp main peak (owing to the majority slow rings), plus a
secondary unlocalized peak or a broad tail corresponding to the
minority fraction of fast rings. Figure 5 displays Gs(r,t)

(symbols) for ρ = 20. This shows a smooth evolution with
time. For comparison we include the results for simple
Gaussian functions (lines) with the same values of ⟨Δr2(t)⟩.
Even in the most non-Gaussian case (t = 106), no putative
division into two subpopulations of minority “fast” and majority
“slow” rings can be made. Data in Figure 5 correspond to the
usual representation of the van Hove function, which gives
more weight to the fastest particles. Figure S6 in the Supporting
Information shows the same data in the representation
proposed in e.g., refs 36 and 37, which gives more weight to
the slowest particles. Similar conclusions can be established: no
putative division into subpopulations of “fast” and “slow” rings

Figure 4. For the highest investigated density ρ = 20, q-dependence of
the ratio of the coherent to the incoherent relaxation time (full black
circles) and static structure factor of the centers-of-mass (thick red
lines).

Figure 5. Van Hove self-correlation function of the centers-of-mass,
for N = 50, ρ = 20, and at different selected times. The functions are
multiplied by the phase factor 4πr2 to represent the normalized
distribution of displacements. Symbols are simulation data. Lines are
calculated by using Gaussian functions, Gs(r,t) = (3/2π⟨r2(t)⟩)3/2

exp[−3r2/2⟨r2(t)⟩], with ⟨r2(t)⟩ being the mean-squared displacement
obtained from the simulation.
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can be made. This is further corroborated by the fact that the
diffusivity and the inverse incoherent time feature the same
density dependence (Figure 2b). This is not the case in systems
with strong dynamic heterogeneity, in which diffusivities and
relaxation times are dominated by fast and slow particles,
respectively. In conclusion, dynamic heterogeneity in the
cluster phase of the rings is “mild”, as opposed to the strong
dynamic heterogeneity characteristic of dynamically asymmetric
mixtures.32−34

As shown in ref 20, the cluster phase is formed by two
subpopulations of rings with very different shape. The clusters
consist of disordered columns of oblate rings (prolateness
parameter p→ −1) penetrated by bundles of elongated, prolate
rings (p → 1). It might still be argued that the initial
prolateness of the ring plays a significant role in its ulterior (fast
or slow) dynamics. We find that this is not the case either. We
have divided the rings into different sets according to their p-
values at t = 0. Figure S7 in the Supporting Information
displays the MSD, at ρ = 20, for several sets covering the whole
p-range. Very weak differences are observed between the
different sets. The most prolate rings are somewhat faster at
early times, suggesting some enhanced longitudinal motion of
the elongated bundles. However, all sets collapse for displace-
ments smaller than the ring size. In summary, the former results
indicate that all rings participate in a similar fashion, via
continuous exchange between clusters, in the relaxation of the
self-correlations, without any clear distinction between fast and
slow subpopulations. This fast mechanism weakly alters the
cluster structure, which relaxes at much longer time scales,
leading to incoherent−coherent decoupling.
Although special techniques for the synthesis of pure rings

have been developed,1 the usual, high-throughput approaches
inadvertently result in the presence of residual linear chains.10

Having noted this, the qualitative picture observed here for the
dynamics of the pure rings will not be affected. We performed
additional simulations of a symmetric mixture of rings and
linear counterparts of identical N = 50 (results will be
presented elsewhere). Though for identical total densities less
pronounced effects are observed, we anticipate that the rings in
the mixture exhibit all the qualitative trends found for the pure
system.
In summary, we have characterized slow dynamics in the

amorphous cluster phase of a concentrated solution of
unknotted nonconcatenated semiflexible rings. Our results
reveal a novel dynamic scenario for glass formation in a real,
simple monodisperse system, characterized by the simultaneous
presence of self- and collective decoupling, soft caging, and mild
dynamic heterogeneity.
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