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‡Forschungszentrum Jülich, Institute of Complex Systems, Theoretical Soft Matter and Biophysics, 52425 Jülich, Germany
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ABSTRACT: The behavior of unknotted and trefoil-knotted ring
polymers under shear flow is here examined by means of mesoscopic
simulations. In contrast to most polymers, ring polymers in a
hydrodynamic solvent at high shear rates do not get shortened in the
vorticity direction. This is a consequence of the backflow produced
by the interaction of the sheared solvent with the end-free polymer
topology. The extended structures of the ring in the vorticity-flow
plane, when they are aligned in a constant velocity plane, favor ring
contour fluctuations. This variety of conformations largely suppresses
the tank-treading type of rotation with extended conformations in
favor of the tumbling type of rotations, where stretched and collapsed
conformations alternate. The extension of trefoil knots is also enhanced, so that the knots become delocalized. We anticipate that
these effects, which disappear in the absence of hydrodynamic interactions, will have a crucial impact on the rheological
properties of concentrated ring solutions, and will also influence the behavior of more complicated systems such as mixtures of
polymers with different topologies.

Investigations on the out-of-equilibrium dynamics of dilute
and concentrated solutions of soft and deformable colloids

have experienced a dramatic increase in the past decade, both
theoretically and experimentally.1,2 The notion of “soft colloids”
encompasses a large variety of polymer-based nanoparticles,
such as linear chains, star polymers and brushes, dendrimers,
and microgels, but it also extends to larger objects such as
vesicles, emulsions, and red blood cells. The main pertinent
issues of interest include, the connection between molecular
architecture, deformation, and dynamics under shear, and then
the consequences of the same on stress distribution, viscosity,
rheology, and thixotropic behavior of sheared concentrated
solutions. Parallel to the investigations on polymer architecture
on structure and dynamics, there has been a dramatic increase
in the efforts to understand the influence of polymer topology
on the same.3−6 Of particular interest are topologically
quenched knots (self-links) that exist on a closed (ring-shaped)
polymer, and the properties they impact on the conformations
and dynamics of the macromolecule. The probability of
obtaining unknotted configurations is decreasing exponentially
with the polymer contour length.7 Knots occur naturally on
long DNA strands8−10 and on proteins,11−13 whereas optical
tweezers can also be used to tie specific knots on DNA-
molecules in a controlled fashion.14,15 Synthetic chemists have
developed a series of strategies to create molecular knots of
well-defined topology by using molecules specifically designed
for this purpose.16

A great deal of attention has been paid to the equilibrium
properties of polymer knots and their relaxation dynamics in
the bulk,17−25 in confinement26−35 and under tension.36−41

Regarding the nonequilibrium dynamics of the same, a

considerable amount of work has focused on knot trans-
location42−49 and on the behavior of knots under elongational
flow.50,51 Very little is known about a different but very
common out-of-equilibrium situation, namely, the behavior of
knots under steady shear. Here, numerical work has been
devoted exclusively to non-Brownian polymers and Stokes
flow;52,53 investigations on the flow behavior of ring polymers
with fully developed hydrodynamics and in the presence of
thermal noise have been limited, at this point, to unknotted
rings.54−59 The purpose of this work is to shed light on the
question of the interplay between topology and hydrodynamics
for knotted or unknotted rings in a solvent undergoing planar
Couette flow. A nontrivial coupling between hydrodynamics
and topology manifests itself, both for unknotted (01)- and
trefoil-knotted (31)-rings, which essentially maintains the
equilibrium size of the ring in the vorticity direction, in
contrast to polymers with ends. These noncompressed
configurations lead to knot delocalization at sufficiently high
Weissenberg numbers. This phenomenon is accompanied by a
suppression of tank-treading motions, which favor localized
knots, and a predominance of tumbling dynamics during which
the knot is distributed across the molecule. In the absence of
hydrodynamics, or in the absence of the closure of the
molecule, the polymer rings decrease in size along the vorticity
direction and the associated phenomenology for the knots
disappears, underlying the crucial role played by the
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simultaneous presence of both for ring polymers under shear in
a Newtonian solvent.
We performed Multi-Particle Collision Dynamics (MPCD)

simulations60−64 to ensure that hydrodynamic interactions
(+HI) between the monomers are included. Lees-Edwards
boundary conditions65 and a Maxwellian cell-level thermostat66

were used to maintain the linear velocity profile of planar
Couette flow with shear rate γ ̇ at fixed temperature. The solvent
velocity has the form vs = γ ̇ y x,̂ defining thereby (x,̂y,̂z)̂ as the
flow, gradient, and vorticity directions, respectively. Molecular
Dynamics (MD) was used to simulate fully flexible polymers of
N = 100 monomer beads, employing a bead−spring model67,68

and making use of the Velocity-Verlet algorithm69 to solve the
equations of motion, coupled to the solvent using the collision
step of MPCD.70 To precisely distinguish the influence of
hydrodynamics, we performed additional simulations with a
solvent modeled by the random MPCD solvent,64 which does
not include hydrodynamic interactions (−HI), but it leads to
similar fluid properties such as shear viscosity or mass diffusion,
see Supporting Information (SI) for details. We simulated
unknotted rings (denoted 01) and rings carrying a trefoil knot
(denoted 31) under shear; simulations of linear polymers
(denoted L) were also performed at selected parameter values,
serving as tests against previously calculated quantities for this
topology. To identify and locate the knotted section on the
ring, we computed the Alexander polynomial for sections of the
ring chosen by performing a bottom-up search, and the ends of
these sections closed by minimally interfering closure,71

returning the shortest knotted section as a result. Shear rate
is normalized with each polymer’s longest relaxation time τ,
such that the dimensionless Weissenberg number is Wi = γτ̇.
Relevant simulation details are presented in the SI.
A (linear) polymer under shear flow is exposed to solvent-

induced tension, which grows with the shear rate γ.̇ Knots
under tension become more localized as tension grows;39

accordingly, one expects the knot’s size, expressed by the
number of monomers Nk in the knotted part, to decrease
monotonically with γ ̇ or, equivalently, with Wi. As can be seen
in Figure 1, this is not the case for 31-rings when HI are present.
Here, the knot size decreases untilWi ≅ 300, but thereafter, the
trend reverses itself and the average knot size increases again
for higher values of the Weissenberg number. In the absence of

HI, the knot size reaches atWi ≅ 500 a minimum value, ⟨Nk⟩ ≅
17, equal to the minimum of the +HI-case and remains
essentially constant at this localized configuration for higher
values of the latter.
Additional insight into the statistics of knot sizes under shear

is gained by considering the probability distribution of the
knotted fraction, P(Nk), shown in Figure 2. The distributions of

the knot’s sizes are, in general, quite broad, for any value of Wi
and for both cases −HI or +HI. Significant differences between
−HI and +HI arise as the Weissenberg number grows. In the
−HI case, Figure 2a, the distribution of Nk is monotonically
shifting toward smaller Nk values. At Wi ≅ 300, a sharp
maximum at Nk ≅ 15 appears, which grows in height while
shifting to lower Nk-values as Wi grows; excursions to
configurations with Nk ≅ 60 are still possible, see insets of
Figure 2a. The +HI case, Figure 2b, is more complicated. The
probability maximum moves toward lower Nk with increasing
shear rate up to Wi ≈ 300, for higher values of Wi the position
of the maximum remains fixed at Nk = 14 and the height of the
maximum decreases. This loss of weight at tight knot
configurations takes place at the advantage of a gain of weight
for extended knot configurations (see insets, Figure 2).
However, there is no other preferred size of the knot, but all
values of the knot size up to Nk ≅ 60 get increasingly enhanced
as Wi grows, pointing to the occurrence of a multitude of knot
sizes, which arise from the existence of irregular dynamical
patterns. We can conclude that at large shears, delocalized knot

Figure 1. Averaged number of beads participating in the knot, ⟨Nk⟩, as
a function of the Weissenberg number Wi for the 31-knotted ring, with
and without HI. The degree of polymerization is N = 100. The inset
shows the same curves in a linear−linear plot, to underline the extent
of the nonmonotonic region for the +HI-case.

Figure 2. Probability distribution function of the knotted section size,
Nk, of a 31-ring with N = 100 monomers for various values of the
Weissenberg number: (a) HI excluded; (b) HI included. The insets
show zooms at the regions of large knots to underline the stronger
nonmonotonicity in the +HI-case.
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configurations are more lasting and frequent in the presence of
HI than in its absence (see SI for more details).
We focus now on the strong shear regime, Wi > 300. Rings

display two main dynamical patterns: During the tank-treading
(TT) rotation, the ring thins out, both along vorticity and
gradient directions, and this shape remains approximately
unchanged while all beads rotate around the vorticity axis. This

type of motion becomes increasingly stable for stiffer rings.54 A
knotted ring in such TT rotation features a knot that remains
strongly tight and behaves as a large bead rotating around along
with all other monomers. The tumbling (TB) motion is
fundamentally different. The ring adopts irregular shapes,
alternating between stretched and collapsed states with a
constant exchange of the beads placed in the tips of the

Figure 3. Normalized expectation values of the diagonal components of the gyration tensor under shear, with and without HI as functions of the
Weissenberg number. (a−c) Rings 01 (black circles) and 31 (red triangles) of N = 100 beads in the (a) flow, (b) gradient, and (c) vorticity directions.
(d) Linear polymer topology (L) of N = 50 monomers, for all spatial directions. Symbols are simulation results and solid lines fits to power laws.

Figure 4. Solvent flow profiles on the flow (x)-vorticity (z) plane at Wi = 500 shearing (a) a dissolved 01-ring and (b) a 31-knotted ring. Velocity

magnitudes at the color bar on the right and positions are expressed in MPCD units of a/τMPCD, where τ = ma k T/MPCD
2

B , with a = m = kBT = 1.
The MPCD collision time step is h = 0.1.
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elongated configurations aligned with the flow direction. The
collapsed states produce an important release of tension which
loosens the knots and increases their size. But most
interestingly, a crucial difference appears in the presence or
absence of HI. This is that while in the absence of HI both TB
and TT are occurring with similar frequencies; in the presence
of HI, TT motions are rare and much less stable. This property
is the result of a deeper underlying mechanism: independently
of the presence of knots, rings feature a nontrivial coupling
between topology and hydrodynamics and the knot size of the
31-ring offers a clear quantitative signature of this effect.
To justify the above statements, we compute the diagonal

elements of the gyration tensor (defined in the SI). In Figure
3, we show a comparison of the results for rings and linear
chains with and without HI. We first see that HI have no
significant effect on the diagonal components of the gyration
tensor for the linear (L) topology: the flow-component Gxx
grows with Wi, whereas the gradient and vorticity components
decrease, following at high Wi-values power laws that are in
agreement with previous results.72 For rings, things are very
different. Although the effects of HI are small for the gradient-
direction diagonal component Gyy shown in Figure 3b, there are
dramatic differences for the vorticity direction component Gzz,
accompanied by corresponding ones in the flow direction, Gxx,
shown in Figure 3c and a, respectively. After a small initial
shrinkage of the rings in the vorticity direction up to Wi ≅ 100,
there is a reswelling of the same, which correlates with a
decrease of the extent in the flow direction, a phenomenon
completely absent when HI are neglected. This is a combined
effect of hydrodynamics and topology which has been already
reported independently for the case of planar elongational flow,
both in simulations and experiments by Hsiao et al.59 As argued
there, a ring that lies (almost) parallel to the flow-vorticity
plane is experiencing a backflow of the solvent from the
horseshoe-shaped regions in the flow direction back toward its
interior, which escapes via the vorticity direction. It is precisely
this induced flow which presses against the ring in the vorticity
direction and causes a swelling, having as a secondary effect the
reversal of stretching in the flow direction and the set-in of re-
entrant shrinking, expressed as a maximum in the curves
Gxx(Wi) in Figure 3a.
The backflow can be explicitly calculated in our simulations

by measuring the average solvent velocity field in the vorticity-
flow plane, as shown in Figure 4. A strong backflow can be
clearly seen in both the unknotted and the knotted cases,
emerging from the two diametrically located regions around the
most extended tips of the ring-shaped polymers in the flow
direction. The closed polymer compresses the solvent along the
x (flow)-axis, which escapes then in an expansive fashion along
the z (vorticity)-axis. This escaping flow meets there the parts
of the ring that lie almost parallel to the x-axis, and pushes them
away along the ±z-semiaxes, causing the aforementioned
swelling in the vorticity direction. The absence of total flux
and the system geometry, give rise to four counter-rotating
vortices in diagonal positions from the box center. Further
detailed results are presented in Section S4 of the SI, where the
effect of varying the Weissenberg number, solvent viscosity, and
box size are shown to have only a secondary, quantitative
influence, which convincingly proves the existence and
relevance of the backflow.
In the case of shear flow, the alignment of the ring with the

flow-vorticity plane is never perfect and the oval-shaped
configuration is not perfectly stable. However, the hydro-

dynamic mechanism plays the key role in the stage of the
motion immediately after the TT-motion. During the TT-
cycles, the rings resemble thin, almost planar ellipses lying on
the flow-gradient plane, until spontaneous disturbances change
the ring orientation, partially turning it parallel to the flow-
vorticity plane. Once this happens, the topology−hydro-
dynamics coupling mentioned above sets in, causing the ring
to swell in the vorticity direction and shrink in the flow
direction. This relaxation of the ring has a number of
consequences: it releases tension, thus, allowing the knot to
relax toward an entropically more favored, delocalized
configuration; it brings forward loose knots that remain
extended for longer time intervals; and it creates swollen,
more random overall ring configurations, which make the
tumbling motion more chaotic, irregular, and long lasting.
During this stage, the knots remain delocalized and contribute
to the increase of the expectation value ⟨Nk⟩. Although the
knots can also loosen in the absence of HI, there the TT-stages
of the motion are longer, the delocalization events much more
rare, and their duration shorter than in the presence of HI.
In the Supporting Information, we also provide videos

showing characteristic motions of knotted and unknotted rings
with and without HI. We also visualize in Section S7 one very
common knot-delocalization pathway conforming to the above-
mentioned scenario. The types of motion described above are
common to 01- and 31-rings, and interestingly, they result in a
decrease of the intrinsic viscosity and in a crossover of its
dependence on Wi between two different power laws, a
characteristic that again bears the unique signature of the
influence of hydrodynamics. Details can be found in Section S6
of the Supporting Information. Also important to point out is
that our findings are at odds with those of Chen et al.57 who
found no influence of HI on the sheared ring conformations.
To summarize, we have shown that the 31-knotted ring

exhibits nonmonotonic behavior above Weissenberg numbers
of Wi ≈ 300 as far as size, shape, alignment, and knotted
section size are concerned, and we have linked this directly to
the presence of hydrodynamic interactions. With and without
HI, 31-knotted rings under shear feature two characteristic
states, one with very tight and one with delocalized knotted
section, and may exhibit tank-treading or tumbling with varying
probability to switch from one to the other. However, the 31-
knotted ring’s tank-treading motion is strongly suppressed in
the presence of HI. A particularly relevant question arising is
whether this phenomenon is generic to all types of knots.
Preliminary investigations on more complex knot topologies
seem to indicate that although the swelling in the vorticity
direction is a common feature, the loosening of the knot also
requires a braided region which is not too complex. Highly
intricate knots also have tight and strongly entangled braids,
whose internal friction is too strong for the knot to be relaxed
by the mechanisms described above. A more detailed
investigation of these questions will be the subject of further
investigations, as well as additional research on possibilities to
use the findings obtained in this work; for example, in the
design of techniques to separate unknotted and knotted
polymer rings. Other possible applications are related to the
manipulation of knots under shear for rings with varying
rigidity or chemical properties along their backbone.
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Simulation model details; knot localization procedure;
supplementary plots on polymer shape, alignment and
deformational resistance; effects of box size and MPCD-
time step; intrinsic viscosity; TT- and TB-frequencies
(PDF).
31-ring tumbling, knot opening, +HI: Video showing
irregular motion of a 31-knotted ring, featuring several
tumbling cycles and several events during which the knot
opens up and remains in an open configuration for
considerably long amounts of time. Hydrodynamic
interactions are taken into account (+HI) (MPG).
31-ring tumbling, knot opening, +HI: Video showing a
different time sequence with knot opening and tumbling
events. Hydrodynamic interactions are taken into
account (+HI) (MPG).
31-ring tumbling, −HI: Video showing a tumbling
motion of a 31-knotted ring in the absence of
hydrodynamic interactions (−HI) (MPG).
31-ring tank-treading, −HI: Video showing a tank-
treading motion of a 31-knotted ring in the absence of
hydrodynamic interactions (−HI) (MPG).
01-ring tumbling, +HI: Video showing a tumbling motion
of a 01-ring in the presence of hydrodynamic interactions
(+HI) (MPG).
01-ring tank-treading, +HI: Video showing a tank
treading motion of a 01-ring in the presence of
hydrodynamic interactions (+HI) (MPG).
01-ring tumbling, −HI: Video showing a tumbling
motion of a 01-ring in the absence of hydrodynamic
interactions (−HI) (MPG).
01-ring tank-treading, −HI: Video showing a tank-
treading motion of a 01-ring in the absence of
hydrodynamic interactions (−HI) (MPG).
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