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Structure and phase behavior of polyelectrolyte star solutions

Norman Hoffmann, Christos N. Likos, and Hartmut Lowen
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Using the recently developed effective interaction potentials between polyelectrolyte stars, we
examine the structure and phase behavior of solutions of the same. The effective interaction is
ultrasoft and density dependent, owing to the integration of the counterionic degrees of freedom.
The latter contribute extensive volume terms that must be taken into account in drawing the phase
diagram of the system. The structural behavior of the uniform fluid is characterized by anomalous
structure factors, akin to those found previously for solutions of uncharged star polymers. The phase
diagram of the system is very rich, featuring a fluid phase at low arm numbers of the stars, two
reentrant melting regions, as well as a variety of crystal structures with unusual symmetry. The
physical origin of these features can be traced back to the ultrasoft nature of the effective interaction
potential. © 2004 American Institute of Physic§DOI: 10.1063/1.1790451

I. INTRODUCTION of the solution, solvent quality, temperatuiis large and a
corresponding flexibility in the possible conformation re-
The two most commonly used mechanisms for stabilizsults. Pincus was the first to assume that quenched PE stars
ing colloidal suspensions against flocculation caused by th@ith a high charging fraction would be characterized by
dipole-dipole dispersion forces are charge stabilization andtrongly stretched chains and an absorption of the majority of
steric stabilization. In the former case, the charge on thehe dissolved counteriorfsKlein Wolterink et al}® as well
colloidal particles is responsible for an electrostatic repulsioras Borisov and Zhulirf& applied scaling theory and self-
(screened by the counterions in the solutiavhich sup-  consistent field[SCP calculations to study the conforma-
presses the dispersion attraction. In the latter case, polyméibns of PE stars. One important finding of these works is the
chains grafted or adsorbed on the surface of the colloidstretching of the chains and the absorption of counterions for
provide a repulsive barrier against coagulation due to theistrongly charged, quenched chains. PE stars falling in this
mutual excluded-volume interactions. The two stabilizationregime are calledosmotic® The rodlike character of the
mechanisms can be combined by grafting charged polymethains in osmotic PE stars was also confirmed in extensive
chains orpolyelectrolytes PE9 on the colloids and in this molecular dynamic$MD) simulations of Jusufet al.”® and
way spherical polyelectrolyte brushes are formed. Sphericah the Monte Carlo(MC) simulations of Rogekt al® Re-
PE brushes are flexible systems which can assume a largently, Borisov and Zhulina have also put forward mean-field
number of different conformations, depending on the valuegalculations for block copolymer micelles with one neutral
of the physical parameters of the system. When the size afnd one charged block, which self-assemble in solufiot?
the colloidal particle,R;, is much larger than the brush There, emphasis was put on the effect of salt omtlogpho-
height L, one speaks otrew-cut brusheswhereas in the logical transitions from crew-cut to starlike micelles and
opposite limit,R.<L, one obtaingolyelectrolyte starsEx-  even on the geometrical transformations between micelles,
perimentally, PE brushes can be realized either by physicallgylinders, and lamellae. However, in this work we consider
grafting PEs on a hard colloid or by using block copolymersPE stars for which the chains are chemically anchored on a
with one hydrophobic neutral block and one charged blocksmall solid core particle, hence the architecture is fixed and
In this case, charged block copolymer micelles result, whichmorphological transitions can be ruled out.
closely resemble PE brushes. From the experimental point of view, the stretching of
In dealing with spherical PE brushes or stars, one distinthe chains in osmotic PE brushes has been confirmed in
guishes between weak annealedones and strong or small-angle neutron scattering experimentSANS) of
quenchecbnes! In the former case, the ionization constant Guenounet al*® A comprehensive SANS study of spherical
of the monomers is low, hence the actual charge on the brushicelles with a charged corona was carried out by van der
depends on the local electrostatic conditions, due to the posdaarel co-workers#~61t was demonstrated that the coun-
sibility of charge recombination. In the latter case, the ion-terions remain confined mainly within the corona and that
ization constant is high and hence the charge on the brushése charged chains assume a rodlike configuration. Dynamic
is constant, irrespective of the details of the system. A conlight scattering(DLS) studies of the corona size for both
siderable number of studies have been dedicated to thguenched and annealed PE brushes were carried out by Guo
analysis of the sizes and conformations of spherical PEnd Ballaufft’ who found that with increasingH annealed
brushes and stars, since the number of physical parametershicushes exhibit a transition to fully stretched chains. Finally,
be tuned(chain length, degree of ionizatiopH and salinity  recent anomalous small-angle x-ray scattering experiments
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(ASAXS) by Dingenoutset al!® have demonstrated that the fective Hamiltonian of the many-body system, taking into
density profile of the trapped counterions follows that of theconsideration the extensive terms that arise from integrating
charged monomers along the chains, in agreement with preut the microscopic degrees of freedom of the system.
dictions from theory and simulatiori$.

Although the conformational regimes of PE stars andA Determination of the pair interaction potential
brushes have thus been studied to a considerable extent, very
little is known about the correlations between PE stars in  We consider PE stars at room temperatliredissolved
concentrated solutions and about the phase behavior of thie an aqueous solvent. Here we consider exclusively the salt-
latter. In their recent SAXS experiments from salt-free solu-free case but the procedure for deriving effective interactions
tions of star-branched polyelectrolytes, Heinrahal. found  in the presence of salt has also been worked out and can be
an anomalous behavior of the position of the main peak ofound in Ref. 8. LetNg be the number of PE stars dissolved
the interstar structure factbt.In particular, although below in the macroscopic volum& occupied by the system and
the overlap concentration its position scales with the oneps=Ns/Q their density. Every chain of the PE star consists
third power of the concentration, it shows a much weakef N monomers and is charged in a periodical manner with
dependence on the density thereafter. In order to understamtharging fractione, i.e., every 1l4th monomer along the
theoretically the features of the interstar correlations, ahains bears the elementary chameThe Bjerrum length
coarse-graining approach is necessary, in which the chainsg=e?/(ekgT) has the value 7.1 A, taking=81 as the
and the counterions are traced out, leaving behind only thdielectric constant of water, whekg denotes the Boltzmann
star centers as relevant degrees of freedom. These interact bynstant. All PE stars have the same functiondlignd ev-
means of an effective potential that has its physical origin orery chain carrie®N monomers. As a result, every star carries
the integrated-out degrees of freedétiThis coarse-graining a chargeQ=efNa, leaving behindN.=«fN monovalent
approach was carried out recently by Justfal,”® bridging  counterions in the mixture. Every star is envisioned as sphere
the gap from the microscopic to the mesoscopic descriptionf radiusR, surrounded by the Wigner-Seitz sphere of radius
of the system. The purpose of this work is to carry now theR,, . The latter is determined by the densityof the solution
next step in the bridging of the length scales and go from thehrough the relationps=3/(47wR3,). The counterions can
mesoscopic to the macroscopic scale. In particular, by emtherefore be found anywhere in the sphere of radysand
ploying the effective interactions derived in Ref. 8, we studyare further partitioned into three different statis:cylindri-
systematically the nature of the pair correlations and we decally condensedounterions are confined to move in narrow
termine the thermodynamics of the fluid state. By comparing;ynnders around the branches of the sthly spherically
with the free energies of many candidate crystalline phasesgappedcounterions can explore the whole interior of the star
we then draw the phase diagram of the system and find @ith exception of the region for the condensed counterions;
host of unusual crystal structures and a rich topology of thexnd, finally,N; counterions can move freely in the bulk of
phases. the solution and are located B r <R,y in the model. We

The rest of the paper is organized as follows: In Sec. Ilyefer to the latter agree counterions. ClearlyN;+N,+ N
we first briefly review the derivation of the effective pair = fN. The numbers of counterions in every state as well as
potential for the two-body problem, generalizing it after- the star radiui have been determined variationally within a
wards to the many-body system and deriving the Hamilee energy functioff(R,{N;}), i=1,2,3, that includes elec-
tonian that includes an extensive, coordinate-independenf,qiatic steric as well as entropic contributions from the

volume term. In Sec. Il we apply standard tools from liquid- - ;hteriond 8 Introduction of the minimizing values of these

Srt]at‘;"l t_r:jeory to dﬁrlve the hstructure ?}nd th(_armod?(ng\mlcss ?arameters back into the variational free energy allows then
the fluid state, whereas a harmonic theory Is applied In Se¢q, 1o getermination of the free enerfyy of an isolated PE

IV'in order to calculate the free energies of various CryStaI's,tar. Since the counterion distributions vary with the system

line phases. On this basis, the phase diagram of the systemdansity due to the dependence of the free energRon f,
drawn and discussed in Sec. V. Finally, in Sec. VI we sumg )

. q ud hnical dorati ecomes a function of the concentratidn="f,(ps). The
marize and conciude. Some technical considerations regarfiesence of this term in the total free energy of an interacting
ing the compressibility of the system are presented in th

: E star system is very important for the the phase behavior

Appendix. of the same, since it gives rise to the so-caNetlme term
of the solution. Thereby, the specific form of the functional
dependence df; on pg plays a crucial role in influencing the
convexity of the free energy and the associated possibility of

In this section, we briefly review the theoretical model spontaneous fluid—fluid phase separation with a large density
that has led on the one hand to the determination of thgap. We will return to this point in Sec. Il C below.
properties of isolated PE stars and on the other hand to the We define the overlap densipf through the condition
derivation of an effective interaction potentisl.(D) be-  (/6)p% o°=1, with o= 2R denoting the diameter of the PE
tween the star centers, whePedenotes their mutual separa- stars, yielding the valup* o®=1.91. The effective interac-
tion. As far as the derivation of the effective potential istion potentialVz(D) has been determined by extending the
concerned, we limit ourselves to an outline and refer thecell model to two interacting stars and taking into account
reader to Refs. 7, 8, and 21 for details. We then employ thé¢he fact that, upon close approaches, the chains of each star
pair potential approximation in order to write down the ef- remain stretched but those belonging to different stars do not

Il. THE EFFECTIVE HAMILTONIAN
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interdigitate’® The approach yields the constrained Helm- ~ Above the overlap densityys>ps , things are simpler.
holtz free energyF,(D) of the two interacting stars whose All counterions are now absorbed within the stars, which are
centers are kept at separatibn and which includesll con-  therefore electroneutral. Thus, for> o, the effective inter-
tributions from the monomers and the counterions. In ordeaction potential vanishes identically4(D)=0. For D<o,
to explicitly fulfill the requirement that the effective interac- the interaction is governed by the entropic contributions of
tion vanish at infinite distance¥,(D) has been defined &s the trapped counterions. However, their number does not any
more vary with density: there is no free space in the solution
Vei( D ps) = Fo(D;pg) = Fo(D—;py) so that the counterions can partition themselves into free and
_ N trapped, thus there is no dependence/gf(D) on the con-
=72(Dipd =2 T1(py). @) centration. Moreover, the procedure %};r derivig(D)
The second line in Eq1) above follows from the fact that Yi€lds in this case a function that smoothly approaches zero
the total free energy of two stars infinitely far apart from one@t D=0, s0 that theVg(D) branch matches with the identi-
another is simply twice the free energy of an isolated starcally vanishingV (D) branch automaticalf§/To be explicit,
Important for what follows is thexplicitdensity dependence Ver(D) for ps>p3 is given by the expression

of the interaction potential on the density of the solution, N,(D)
which stems from the process of carrying out a partial trace  8Vgg(D)=Ny(D)In D D
over the microscopic degrees of freedom. Special care has to 477[ 1+ —[1— In(—) “
be taken whenever effective interaction potentials with ex- o
plicit dependence on thermodynamic quantities, such as den- N,(D) D D
sity or temperature, are employ&d?°therefore we need to + oT D —Inz(— +N,(D)
elaborate on the physical origin of this dependence. 1+ — 1—In(—” 7 7
Below the overlap densitps<p% , there is space for the o o
counterions to move free in the solution. Hence, only a N
density dependent fraction of those is trapgegindrically In( yym +1], 3)

or spherically within the stars, with the effect that the latter
carry a net charge. Consequently, for interstar distaizes whereN,(D) is the number of spherically trapped counteri-
>g, one obtains an interaction between charged sphericains for two PE stars at distan and N is the same
colloids, screened by the free counterions, that has the formuantity for a single PE star. The expression for the quantity
of a Yukawa potentialV 4(D)~exp(—«r)/r, where the su- N,(D), which is the number of spherically trapped counte-
perscript denotes the conditidb>o. We emphasize here rions for two stars at a distand®, is given in Eq.(37) of
that the cell model is employed in order to determine theRef. 8, wherea:N(zl) is given by Egs(22) and(23) in the
counterion distribution inside and outside the interactingsame citation.
stars, as well as the effective interaction for distanBes Summarizing, we are dealing with an effective interac-
<o. ForD> o the interaction imssumedo be of a Yukawa- tion V(D;pg) that features a dependence on the dengsity
type and it isnotderived in the framework of the cell model. below the overlap concentration and it is free of any density
The constani is the well-known inverse Debye screening dependence above the overlap concentration. Quantitatively,
length, given byt this interaction isultrasoftandboundedi.e., it grows slower
than any inverse-power law 83— 0 and remains finite at
[ 3Nahg D=0. The latter property is associated with the fact that we
K= va R3’ 2) ignore the direct interaction between the centers of the stars,
which is of microscopic range and has no effect on the struc-
where it has been taken into account tbaty the N; free  ture and phase behavior of the macroscopic system. It is
counterions per star screen the electrostatic interaction. Thather the chain- and counterion-mediated effective potential
density dependence of the brangfj(D;ps) of the effective V¢4, whose range is mesoscopic, that determines the behav-
potential comes, on the one hand, from the explit de-  ior of the solution, which will be presented in the following
pendence ok in Eq. (2) above and, on the other, from the sections. In Fig. 1, we show the effective potential for PE
dependence of the number of free counteribiison the  stars for two different combinations of functionalitiésand
same quantity. The quantity; rapidly approaches zero as charging fractionsy, both below and above the overlap den-
ps— ps but otherwise it has a rather wepkdependence for sity. In this figure and all others that follow, the results per-
a broad region ops<p% . The branchVg(D;pJ, valid for  tain to a degree of chain polymerizatidf=50. It can be
D<o, contains electrostatic, steric as weII as entropic conseen that with increasings the interaction becomes softer,
tributions arising mainly from theN, spherically trapped until one reachepy , at which point the density dependence
counterions of every star. All these quantities vary with thedrops out. Moreover, for a given density,s becomes more
densityp, of the solution and/g4(D;ps) picks up a concomi- repulsive as and/ora grows.
tant P dependence. The two branches of the effective poten-
tial, V¢(D;p9 andV_y(D;ps are matched @ = o under the
cond|t|on that the interaction and its derivative with respect
to D be continuous there. For more details in the matching Interaction potentials that feature an explicit density de-
procedure we refer the reader to Refs. 8 and 21. pendence have to be treated with special consideration.

B. The many-body system
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Our starting point is Eq(1). First, consider a solution
containing only two PE stars and I€, be the canonical
partition function of the system. The coordinates of the cen-
ters of the two stars are given I and their momenta by
P;, i=1,2. Clearly,D=|R;—R,|. The free energy of the
two-star system i&,=—kgT In Q,. The quantityF,(D) in
Eq. (1) is simply the constrained free energy
—kgTIn Qy(R,R,) of the systenf® when the first star is
held fixed at positiorR; and the second at positid®,. The
constrained partition functior@,(R;,R,) is obtained by

tracing out canonically all other particles while keeping the
Dio 6 18 star centers fixed. The full partition functi@, is then cal-
culated by taking the integral of its constrained counterpart
9,(R1,R,) over all position vector; , R, and, in addition,

so | ! - g:gi:?g ] tracing out canonically the momenta of the two particles, in

\ N ‘_‘_'Iﬁﬁiiif order to take into account their kinetic energies once the

a0t VA : constraint of holding them fixed has been lifted. Specifically
\\ ' we have?®

o it
Qe[ [ I pien - 51

1
X f &R, f 0°R, exif — BVer(|Ri— Rol;p0)]

(b)

~

0 1 1 I Il I
00 02 04 06 08 10
Dic

1.6 18

Xex —2Bf1(ps)]. 4
Giar concentatiop. for two diferent combinatons o the funcionaliy N 0. (4) above.h denotes Planck's constar= (ksT) ™,
and the charge fraction. (a) f=10, a=1/4; (b) f=15, a=1/3. andm is the mass of the central particle.
We now generalize these considerations to a solution
containingNg PE stars, making further the physical assump-
Stricﬂy speaking1 arue Hamiltonian function should involve tion of pair additivity of the interactions. In other words, we
solely the canonical coordinates of the degrees of freedorfix the centers of the PE stars at the positi®isR,, ... Ry,
that characterize the system, i.e., the positions and momenteollectively{R}) and we assume that the corresponding con-
of the fundamental statistical units constituting the mixturestrained free energfy ({R}) is given, in analogy to Eq1),
In a microscopic description, where all monomers, counteripy the expression
ons, and solvent molecules are considered explicitly, this is
indeed the case. Once, however, some microscopic degrees 1
of freedom are traced out and one switches over to a meso- JNJ(1RD= Egj Ver(IRi=Rj|;pg) + Nsf 1(ps). ®)
scopic, coarse-grained view of the complex fluid, explicit
dependencies of the effective interaction on thermodynamic  The total partition functiorQN,S is obtained as the gen-
quantities cannot be ruled out. The effective potential losegralization of Eq(4) by the relation
then the rigorous meaning it has in a microscopic scale. As it
has been pointed out recently in the literature, in such cases hSNSQst Ne p( BPi2>

N

— N
the effective interaction can only be used in the context in QNS_ N dp SiHl ex

2m
which it has been derived:?® Certain sum rules or paths to

the thermodynamics of the system, such as the compressibil- 1 N B Ns

ity or virial routes, which are valid and equivalent to one XQ_NSJ dR™s expg — 52_ Vei(IRi —Rjl;p9)
another for simple fluids, do not necessarily maintain their :

validity for density dependent effective potenti&i$>2°In x exd —NgBf1(pd], (6)

fact, they not evemeedto be equivalent to each other. If, for N ) )
example, the effective potential has been derived under th&nere f3dP e agshorthand. for the multiple integral
procedure of fitting simulation data for the compressibility of / /*/d°P1d”P2--d*Py, and similarly for the position co-
the system, then it is allowed to calculate the free energy ofrdinates. LeZy_denote the second factor on the right-hand
the complex fluid via the compressibility route but employ- side of Eq.(6) above. The total Helmholtz free energy of the
ing the virial route for the same effective potential will yield system,FNs is given as—kgT In QNs and Eq.(6) yields

results that are neither consistent with the compressibility

one nor valid altogethé? Therefore, it is crucial to specify Fn=FiatFext Fuol

the context in which the effective potent D;pg) of this

work has been derived. P Dipd =ksTNJIN(psA %)~ 1]~ kgTINZy +Nef1(p9),  (7)
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where A =/Bh%/(2m) is the thermal de Broglie wave- 150 -
length. The free energy is thus composed of the idealfpart 130 | :;:;ggf: 1% el
stemming from the kinetic contributions, the excess part 110 | | —— 5=30,C,=2190 e

caused by the interactionsnd an extensive contribution
F.o=Nf1(pg that constitutes th@olume termof the free
energy?’ Though the latter has no effect on the interstar cor-
relation functions, it does affect the values of thermodynamic
guantities. Hence, the process of integrating out the micro-
scopic degrees of freedom not only brings about a density
dependence of the effective interactions but produces re-
sidual terms in the free energy as well, which cannot be
ignored if one is interested in the full thermodynamics of the
system.

We can now define the effective Hamiltonidt for  FiG. 2. The volume ternf,,(pJ of PE star solutions as a function of the
the many-body PE-star solution as densityp, for three different functionalitie, as indicated in the legend, and

for fixed charge ratiox=1/3. For purposes of visualization, a thermody-

Ns Ns namically irrelevant, linear terr@;pg has been added to the volume terms,
E 2— + = 2 Ver(|Ri—R; | po)+Nsfi(py. (8) with the values of the constaf@; also being indicated in the legend.

Bo.0)

According to Eqs(5)—(7) above, this Hamiltonian fulfills by
its construction the condition of conservation of the total freeStates with densitiesf andpS, these are determined by the

energy of the assembly, which can be expressed as conditions of equality of pressures and chemical potentials,

which read as
—3Ng

| P RN e gt © =Rt = s -0, 19

re A ’ B

There exist no ambiguities regarding the calculation of ther- falps)=Ta(ps). a4
modynamic quantities, such as compressibility, pressure, in- Any terms in the free energy density that are linear in
ternal energy, and so on. E48) and(9) are to be considered ps, such as the last term in E¢LO), have evidently no in-
together, i.e., our effective Hamiltonian is valid in the con- fluence, neither on the stability criterion, E42), nor on the
text of Eq.(9): it allows for the calculation of the total free phase boundaries, Eq4.3) and(14). Above the overlap con-
energy of the system, from which then all relevant thermo-centrationps>py , f1(pJ) is a density independent constant,
dynamic quantities can be derived in a standard way. Equésince there is no possibility for rearrangement of the counte-
tion (9) is the key expression for the determination of therions. Accordingly,f,q(pg) is just a linear function of the
correlation functions between the star centers and for thdensity that does affect the values of the chemical potential
subsequent derivation of the excess free enétgyin the  [see Eq(14)] but has no influence on the phase behavior. A
fluid state, as will be discussed in Sec. Il nontrivial density dependence df,,(ps) occurs for pg
<ps . As shown in Fig. 2, the volume term is a convex
function of the density in this regime. This additional posi-

The stability of uniform phases with respect to a spon-tive contribution to the second density derivative of the total
taneous separation into a dilute and a dense configuration feee energy density is of crucial importance for the validity
determined by the convexity of the fluid free energy densityof the theory. Indeed, due to the fact that the effective inter-
fa(pd=Fn /€ with respect tops. Defining also fey action potentialV¢4(D) softens with increasing density, the

FN :_kBTIn

C. The volume term

=F,/Q, Eq.(7) yields sum of the ideal and excess contributiond #6p¢) turns out
to be a concave function @f in the dilute regimep <p? . If
fa(pd) =keTpd IN(pso®) = 1]+ fex(po) + froi(po) the volume term were ignored in this case, the apparent vio-
lation of Eq.(12) would imply there is arunphysicalphase
*+3kgTps In(A/ o), (10 separation between two fluid phases. The volume term guar-
where the volume term, antees, therefore, the stability of the system against sponta-
neous liquid-gas coexistence.
fuoi(ps) = psf(ps), (11 Finally, we remark that the “cusp” off,,(po at the

hvsically includes the free enerav contributions from the overlap concentratiop} , which can be seen in Fig. 2, has
physically inciu gy ‘butl Cits physical origin at a corresponding discontinuity of the

integrated-out counterions and monomers of a single Sta‘]'[rrst derivative of the number of free counterions as a func-

Stability with respect to spontaneous phase separation Bon of the density. Indeed, as mentioned above, figr
guaranteed whefy(pg) is convey, i.e., . ' :

>ps , N3 vanishes identically, whereas fpt<p} Nj is a
f(pe)>0, (12) smooth function ofps. Thus, N3, which is the result of a
minimization procedure, is not an analytic function of the
where the primes denote differentiation with respect to thedensity and shows af a discontinuity in its first derivative,
argument. Should there be phase coexistence between tvedin to that occurring for the order parameter in second-order
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phase transitions. This nonanalyticity reflects itself in the dis- 25
continuity of the first derivative of the functioiy(pg) at the
overlap density. It is nevertheless immaterial for the full ther- 20
modynamics of the system because it is compensated by a
corresponding discontinuity of the opposite sign for the ex- 15}
cess free energy terii,(ps)- g
10|

I1l. THE UNIFORM FLUID

. . . . . 05

In this section we use the above-derived effective Hamil-

tonian in order to calculate the pair structure as well as the 00 . . . .
free energy of uniform fluid phases of PE-star solutions. The ) 1 2 3 4 s
structural data yield information on the correlations in the ric

fluid, which show anomalies associated with the ultrasofiyg 3 The rdfg(r) for PE-star solution for the arm numbér15 and
character of the pair interaction and with its peculiar densityeharging fractiona=1/3. The density decreases from the left to the right,
dependence. The free energy will be useful in drawing theut remains below the overlap concentratjghin all cases.

phase diagram of the system.

A. Structure
imaginary fluid with a density-independent interaction which

"Yoincides with the potentidf +(D;ps) . For this second fluid,
enforcing the consistency of the compressibility and virial
routes leads to a higher accuracy in the calculation of the pair
Ng structure. We follow, therefore, the procedure of enforcing
f)(z)(rl,fz:{R}Fz o(r1—Ry)o(r,—Ry). (15  consistency between the two routes, although none of them
1) holds for the true system, with the single purpose of obtain-
The expectation valuép®(r,,r,;{R})) of this operator is ing accurate pair correlations. The free energy of the system
the two-particle density of the system(?)(r,,r,) which, is subsequently calculated in an alternative wage Sec.

As far as pair correlations are concerned, the basic qua
tity is the two-particle density operat@?)(r,,r,), defined
through

for a translationally invariant fluid, depends only an 1lIB), which involve neither the pressure nor the compress-
=|r,—r,|. The radial distribution functiofirdf), g(r;pg), is ibility routes.
defined as In Fig. 3 we show the rd§(r) for three densities below
the overlap valug? . A striking feature is that, in contrast to
p(r)=p2g(r;p). (16) s o

usual fluids, the height of the main peak gffr) decreases
Introducing, moreover, the correlation functidrfr;p) as  with density, although its position moves towards smaller
h(r;p9)=9(r;pgd —1, the structure factoB(k;pg) is defined values ofr. The second effect reflects the natural decrease in
as the nearest-neighbor distance within the fluid upon increase
of the density. In atomic fluids, though, where the potential is
S(k;Ps):1+Psf d3r exp(—ik-r)h(r;ps). (17) steep and density independent, this is accompanied by a
strengthening of the correlations. The opposite effect occurs
As is clear from Eqgs(8) and(9), the calculation of ex- here and it is a consequence of the fact that the effective
pectation values of quantities depending on the coordinatgsotentialV4(D;ps) becomessofteraspg grows, see Fig. 1.
{R}, such as the two-particle density operator in Etp), Beyond the overlap density, an anomalous behavior of
involves the same standard rules that are valid for densitthe fluid develops. This is first investigated by means of the
independent interaction potentials. At a given, fixed densitydf. In Fig. 4 we show the rdfs for a variety of densities
ps, the latter acts simply as a parameter in the effective>p? . As seen there, the position of the main pealg@f)
Hamiltonian that influences the form of the interaction.ceases to decrease with growing density. Instead, a different
Hence, standard closure relations can be used to determiievelopment occurs: first a “shoulder” develops on the flank
the pair structure of the fluid. In this work, we have em-of the main peak of(r), as can be seen in Fig. 4 fpro®
ployed the Rogers—Young clostfethat interpolates be- =4.0. Subsequently this shoulder grows into a new peak
tween the Percus—Yevick and the hypernetted chain closurdscated at a distance smaller than the typical interparticle
and contains an adjustable paramétdror density indepen- separation. In doing so, the height of the new peak steadily
dent potentials{ is fixed by the requirement of thermody- grows with increasing density, whereas the peak height of the
namic consistency between the compressibility and viriamain peak falls off. By further increasing the density the new
pressure routes to the free energy of the system. In the cageak surpasses the original main peak in height. This is char-
at hand, where the interaction is density dependent, the viriagcteristic for the anomalous fluid behavior, having its origin
route is not valicf>~?°although the compressibility should be at the ultrasoft nature of the pair potential and being very
preserved if the correlation functions of the star centers resimilar to that seen for neutral star polymé?she position
main invariant under the process of tracing out the monoof the second peak is not at twice the distance of the first
mers and the counterioR$.However, the pair structure of peak, as occurs in the case of normal fluids. This is due to the
our system at a given densipy is identical to that of an  fact that the position of the former is determined by the star
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. ing fraction a«=1/3 as function of the dimensionless wave vedtor The
— pg =56 density grows from the left to the right.
" ———— p @ =72
15 ',']," - pd=96 | |
dependent length scade=p 13 setting the typical interpar-
10 ticle distance in a normal fluid. On the other hand, we have a
8o . . .
density-independent length scale, set by the star diameter
beyond which the interaction potential above the overlap
05 | density vanishes. Fgr;<p% , the particles move essentially
within the Yukawa tails of the effective potential and they do
not experience the ultrasoft core of the interaction. There, the
00, pair correlations of the system are dominated by the length

ric scalea. For ps>p% , both length scales play a role and the
structure factor develops anomalies, see Fidp).6Let us

FIG. 4. The rdfg(r) for a PE-star solution fof=15 anda = 1/3 for various
densities exceeding the overlap vaie.

diametero whereas the the position of the latter expresses a
local clustering in the ultrasoft fluid. Each cluster is formed
by particles at typical distancesfrom a given, central one.
The balance between the repulsions due to the neighbors
outside the cluster and the soft repulsion from the internal
ones determines the position of the first pealky@f), which

is therefore not identical to the mean interparticle distamce
For densities above the overlap density it is energetically
preferable to keep as many as possible particles outside of
the star diameter of another particle. This helps reduce the
energy of the whole system. Hence, the second peak of the
rdf is located close to =0, where the potential is weak,
since it has to vanish far>o.

The anomaly ofy(r) is reflected in the development and
shape of the structure fact&®k), as shown in Fig. 5. For
densities far below the overlap density, the main peak shifts
towards larger wave number for increasing density, as known
for normal liquids. Close to the density} 03=1.91, the
height of the main peak falls off, see Figah This is, once
more, a reflection of the softening of the density dependent
interaction potentiaVq4(D;ps) with increasing density.

For ps>ps, an anomalous evolution dB(k) is ob-
served, closely resembling the behavior seen for neutral star
polymers. The height of the main peak decreases for increas-
ing density and at the same time that of the second peak

()
&

—_ p,a:=0.8
— pgl=12

— po’=216
—— 96’ =28
---- pg’'=32

5

20

25

denote byk, the position of thenth peak of the structure

mcrea;es, surpassing the flI’S'F one in height. This anomaIOH‘—‘?G. 6. The structure factoB(k) of PE star solutions(a) for densities
behavior ofS(k) can be explained by the two length scaleSpelow p* and(b) for densities above*. As in Fig. 5, the parameters here

present in the problem. On the one hand, there is the densitye: =15 anda=1/3.
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FIG. 7. (a) The rdfg(r) and(b) the structure factoB(k) obtained by the RY ~ FIG. 8. (a) The radial qistribut'ion functiog(r) and(b) th_e strycture factor
closure forper®=p,=11.2. In(b), the structure factor gig®=8.0is also  S(K) for the three magic density valupg,, m=2,3,4 defined in Eq(18) of

plotted for comparison. the text. The results refer to PE stars with 15 arms and charging fraction
a=1/3.
factor. The position of the first peak &(k) is set by the It is challenging to investigate what happens if the den-

length scaleo, i.e., ky~2m/o. The length scaler—a sets  Sity is further increased. Does the new main peak increase
the position of the second peak, i.&,~2m/(oc—a). As furtherindicating a freezing of the whole system, or does the
demonstrated in Figs. 5 and, the position of the first scenario observed for the first peak repeat? We have solved
peak remains nearly constant, wher&aslecreases with in- the RY closure up to the densipg=90, finding out the the
creasing density. This effect is due to the increase of th&éecond possibility materializes. The height of the main peak
quantityo—a~o—ps’l’3 with ps. falls off and the originally third peak becomes the highest
According to the above analysis, we can now surmisedne by further increasing the density, as demonstrated in Fig.
that the first peak of the structure factor disappears altogeth&b). This behavior can be attributed to development of more
if we tune the density in such a way that the two lengthand more oscillations of(r) in the interval[0,0], see Fig.
scales,a and o—a roughly coincide, i.e.,o=2a. This  8(a. One can repeat the argument for the magic density
should occur wherg(r) shows exactly two oscillations of the structure factog(k) will be dominated by a single length
wavelengtha betweerr =0 andr=o-. In Fig. 7(a) we show scale if there is an integer number of oscillations ing(r)
the rdf for po®=11.2, which shows precisely two Within the interval0;a]. This occurs for a sequence of magic
oscillations! in the interval [0,0]. We call this density densitiesp,,, the index denoting the number of the afore-
“magic” density p,, where the index labels the number of mentioned oscillations. Knowing the magic density, it is
oscillations between 0 and. Concomitantly, the structure an easy exercise to show that ihg is related top, through
factor has an extremely high peak for this density value, m\ 3
which is located at the position/2a~4=/o. In Fig. 7(b), me(E) p, M=3,4,5,.... (18
we showS(k) at ps=p,, together withS(k) at density for
p<o>=8, in order to illustrate the disappearance and replaceksing p,0°=11.2 we obtairpzo>=37.8 andp,o°=89.6.
ment of the first peak through the second one. The anomaly The above results can be nicely summarized in a double
of S(k) is twofold. On the one hand, the successive peaks arlgarithmic plot. In Fig. 9 we show the first few peak posi-
not located at positions that are integer multiples of one antions of S(k) as function of the density; we stress that when
other. On the other hand, the heights of the peaks evolve inwae talk about theath peak we actually mean the peak which
peculiar way, a peak appearing as the highest in a certaiis thenth peak at lower densities, where the system behaves
range of densities, then losing in height in order to be reas a normal fluid. The reason is the disappearance and re-
placed by the next one as the highest, and so on. placement of the “first” peaks through peaks of higher or-
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FIG. 9. Double logarithmic plot showing the position of the maxim&@¢) FIG. 10. The excess free energy dendify(py of a fluid of PE stars as a
as a function of the density,s®. The filled symbols denote the highest function of the concentratiops. The results have been obtained through the
peak. The arrows on the plot indicate the positions of the magic densities-integration route described in the text and pertain to stars avitti/3.

pm, Whereas the arrow on the horizontal axis denotes the overlap density

p% . The dashed line has slope 1/3.

above into Eq(6) and making use of Eq7), we find that

ders. Thus, the maximum of first order becomes the one Oi]rre_spegtive ofgthe explicit density dependence of the inter-
second order and so on. The filled symbols in Fig. 9 denot&ction; it hold$

the highest peak. From this figure, we can draw the follow- SF e V] @) 1,

ing conclusions: the fluid that interacts by the ultrasoft,  3v_ (1 r,.p) 2" (Iri=rap)=5p50(rips). (20
density-dependent potential is normal for all densities ] i ]
ps=p* . In this regime, the position of the first maximum The last equation provides the so-calllednftegratlon
scales with the density atsl~p:s”3. The maxima of higher rOL_Jteto the excess fre_e energy of t_he sysférWe introduce
order are located at positions,=nk,, meaning that only a linear path of ‘charging’ the effective potential that depends
one length scale determines the structure of the syster@" @ parametex and reads as

Ab0\_/e overlap, this is not true anymore; the positions of thg VO(r1,r2:pd =\Vei(r1,72:p9), (21)
maxima become very insensitive to changes in the density, in ) ]

agreement with the experimental observations of HeinrictfUch that forh=0 we obtain an ideal system and for= 1

et al® However, if we extrapolate the line with slope 1/3 to the full interacting system. Along this path, EO) can be
higher densities, we find that this line passes through thétegrated to yiele?

magic densitiep,,, of Eq. (18). At these density values, the 1 1

two competing length scales of the problem become integer fedps) = Epgf dsrveff(r;ﬁs)f drg®(r;py), (22
multiples of one another, yielding again the usual scaling 0

behavior of the position of the main peak with the density,with g™ (r;pJ being the radial distribution function corre-
Kmas~ P sponding to the potentialVx(r;po instead olV«(r;ps). For
A=0, itis g9(r;p)=1, i.e., we have the rdf for a homoge-
neous, noninteracting fluid. Fox=1, it holds g®(r;pg
=g(r;pg, i.e., we have the rdf of the real system.

With the ideal termfiy(pg and the volume contribution We have thus employed E2) to calculate the excess
fua(po to the free energy density of the fluid already deter-part of the free energy. For every density, we have calcu-
mined [see Eq.(10)], we need now to calculate the excesslated the family of radial distribution functiorg™(r;p) by
contribution, fo,(pg in order to access the full thermody- solving the Rogers—Young integral equation, as discussed in
namics of the system. As the density dependence of the irSec. Ill. In Fig. 10, we show the resulting excess free energy
teraction rules out the application of the compressibility anddensity f.(ps) for charge fractiorn=1/3. A discussion re-
virial pressure route§32) we resort to a different technique garding the validity of the compressibility sum rule and a
that is valid for the interaction potential at hand. From Egs.comparison between the-integration result and the struc-
(8) and(15), it follows that the interaction part of the Hamil- tural prediction for the isothermal compressibility of the sys-

B. Thermodynamics

tonian can be expressed as tem are shown in the Appendix. Due to the softening of the
Ng effective potential with increasing density below the overlap
> Vei(|Ri =Ry o) concentration, the excess free energy density shows a non-
1#]

convex behavior fops<p% . Were fo(ps) to be the only
contribution to the free energy density of the fluid, this con-
:f d3r1f d3rop@(ry,r {RHVer(ri—r3);ps). (19  cavity would signal spontaneous phase separation into a gas
and a liquid. However, when the ideal and volume terms are
Regarding now the excess free energy as a functional aidded to the excess contribution, a convex free energy re-
the interaction potentiaF ¢,= F ] V], introducing Eq(19) sults, as shown in Fig. 11. Thus, we see that the volume term
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800 ¥ ¥ ¥ ¥ — its deviation from its equilibrium position. Hence, a har-
700 [ [— f=16,¢,= 1300 / 1 monic approximation is justified and we choose as reference
600 | fﬁ'ﬁfii‘ijgjiﬁgﬁ YR Hamiltonian that of the Einstein model. In this model, the
500 | e particles are noninteracting but are bounded to the equilib-
o rium lattice positions by harmonic springs of spring constant
,S;E 300 | & Thus,’H, reads as
Q200
100 | N [ p?
of Ho=2, $+§<Ri—s>2, (24
-100 |
—200 7 ] 2 3 P 5 p where the sefS} spans the prescribed lattice. Let aj$6,}
p.o’ be the set of reciprocal lattice vectqiRCV9) of the lattice.

In what follows, the spring constarit plays the role of a
FIG. 11. The total free energy density(pg) = fig(ps) + fexps) + fro(ps) for L | P dgf @{bp |y . h .
a PE-star fluid with the same parameters as in Fig. 10. Note that the conca\)@”ajt'ona paramet.er and, . or non(.:u ic lattices, the S.I.ZE ra-
part and the cusp of the excess free energy contribution are eliminated B§0S in the conventional unit cell will be used as additional
the convexity and the corresponding cusp of the volume term shown in Figones. Since the kinetic energies in the reference and the real

2, to produce a smooth curve that is concave-up. For clarity, linear terms oﬁamiltonians coincide. we are left to calculate the potential
the form Cps have been added to the results, with the values of the con- '

stantsC; being denoted in the legend. energy of both S’_yStemS'
The calculation of the Helmholtz free energy of the har-

monic solid easily yields
here has the effect aftabilizingthe fluid against phase sepa-

ration, a featureopposite to that observed for charge- Fo 3 a A

stabilized colloidal suspensions in the presence of®8alt. N 28" " ;)+3kBTIn<;), (25
These differences quite probably arise from the fact that we

are dealing here with penetrable objects rather than with hardhere

colloids, and also due to the fact that the instability predicted

in Ref. 34 occurs for nonvanishing salt concentration, _ pBéo?

whereas we examine a salt-free system here. a= "5 (26)

IV. CRYSTALLINE PHASES Equally, the calculation of the canonical average of the po-

. tential energyU,, is straightforward and we obtain
Having calculated the free energy of the homogeneous,

fluid phase, we turn in this section our attention to that of (U)o 3

various candidate crystalline phases, so as to be able to draw N §kBT- (27)
the phase diagram of the system in what will follow. For the
crystalline solids, we employ the approximate Einstein
model®** The latter is based on the Gibbs—Bogoliubov in-
equality, which relates the Helmholtz free energyof a
given system described by tlieffective Hamiltonian™,

The calculation of U)o is more involved, but it can nev-
ertheless be reduced to that of one-dimensional integrals as

he Helmholtz f f a ref ith (Yemo _ 1 AR
to the Helmholtz free energl, of a reference system wit N 3. 1= ff dX Ve (X; pIX
HamiltonianH,, as j#0 m jJo

F<F=Fo+(Het— Ho)o=Fo+(Uet—Ug)o. (23) x{exf —a(x—X;)%/2] —exfd —a(x+X;)?/2]}.
Here,U s andU stand for the potential energy functions of (28)

the effective and the reference Hamiltonians, respectively, . . .
and the(...)q symbol denotes a canonical average performe(;rhe sum on the rlght-ha_md side counts_ al She."S of lattice
with the Hamiltonian of the reference system. This proceduré’eCtorS with the exception of=0 (self-mtergctlom The
is useful if(a) a HamiltonianH, can be found that is close to quar_1t|ty n; denotes the number of equal_ Iattlcg vectors be-
that of the real system in the prescribed ordered staté?ng'ng o the same sth{j=|Sj|/a are d|men§|onlgss lat-
(b) H, allows for a straightforward calculation &f, and tice v~ectors and, accordingly=D/o. ForT=.0, €., N the,
(H~Ho)o and (c) the reference Hamiltoniaf, contains at limit a—o0, Eq.(28) reduces to the expression for the lattice
least one variational parameter to minimize the right-handSum
side of the inequality23). As this method only provides an
upper bound for the Helmholtz free energy, the presence of M: EE N Ver(X;) (29)
the variational paramet@ in H, is important in optimizing N 2j Jrem
that upper bound.

Since we are dealing with a soft interaction between PE ~ For computation purposes, an alternative expression to
stars, the potential energy felt by each particle in the ordere&q. (28) is useful. It involves the Fourier transfordfug(k;po)
lattice can be locally approximated by a quadratic function ofof the effective interaction at wave numbeiand reads as
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<Ueff>0_ o’ 21 m A )
N~ 20,8y O~ QY21 Ver(Qipy

1 (= ~ o~
~ oz | daf extt—o% (2 Wentaip),
0

(30

where v, denotes the volume of the primitive cell of the
corresponding lattice in direct spaags+ ko and{Q} is the

set of all dimensionless reciprocal lattice vectdps=K;o. fluid dia
Equations(28) and(30) are completely equivalent; for weak %0 1.0 2.0 3.0 40 5.0
localization of the particles around the lattice sitemall @), P

Eq'. (30) is m_ore suitable, .Smce a summation over a feWF G. 12. Phase diagram for PE stars for fixed charging fractieri/3. The
reciprocal-lattice shells suffices to guarantee convergence Bbints denotes the phase transition between different crystal structures, the

the sum, whereas for strong |oca|izatidargea), Eq. (28) squares denote the fluid—solid transition. The density gaps between the co-
is computationally more convenient existing phases are extremely small, hence they are not shown in the figure.

. . The lines are guides to the eye.
We tried a large number of candidate crystal structures 9 Y

with various symmetries and minimized the free endtgyf
Eqg. (23) with respect to all variational parameters available.the same sequence as in the phase diagram obtained by lat-
The lattices we considered were the simple culsig, the tice sum calculation&: For small densities, the fcc lattice is
body-centered-cubitbco), the face-centered-cubiécc), the  favored followed by the bcc lattice for increasing density.
body-centered orthogondbco), as well as the hexagonal- Further increasing the density, a body-centered orthogonal
close-packedhcp) structure, the simple hexagor(aex), the  phase appears, which we call hdattice, to differentiate it
trigonal®’ the diamond, and the A15 latticé%.*°These aug-  from another one that is stable at higher densities. The size
ment considerably the set used previously in carrying outatios for this bce lattice are 1:0.5:0.5, i.e., the crystal has
lattice sum fr—oc) calculations’t two equal small edges and one large edge for its conven-
With F ., denoting the value of the variational free en- tional unit cell. Due to the equality of the two edges, this is

ergyF at the minimum with respect to the variational param-then abody-centered tetragondbc?) lattice, with a higher
eterS, the tota| free energy of the CrysﬁLol(ps) iS flna”y degree Of Symmetry thal’l the general bCO. In contrast to the
obtained by adding td,, the state-independent volume Preliminary phase diagraft, a simple hexagonal lattice
term Fyo(pg. The winning phase at fixed density is the oneShows up for densitiepsoc°=3.0. For higher densities the

density fso(pg) is obtained a$s,(pg)/ €. stable. The size ratios for the hcorystal are 1:1:0.5two
large edges and one smaland we have again a bct lattice.
The size ratios for both the bgcand the bceg crystals equal
exactly the ones obtained by lattice sum calculations, i.e., the

With the free energy densities of all phases, fluid, andeffects of the finite temperature on the geometry of the crys-
solid being available, the phase diagram can be drawn btal are negligible, an effect also seen in the case of neutral
performing the common tangent construction on thépy) star polymeré? In summarizing, we can say that the lattice
curves and ,(po) curves* A preliminary phase diagram for sum calculation have yielded the same sequence of lattice
the system at hand has been drawn in Ref. 21. There, thgpes below the overlap concentration, however, new crystal
stable crystalline phases were determined on the basis @hases turn out to be stable above the overlap density, where
lattice sum calculations only; no minimization of the free the ultrasoft part of the interaction potential becomes rel-
energy was carried out. Moreover, the phase boundary witbvant. Alternatively, the Hansen-Verlet criterion is valid
the fluid phase has been determined on the basis of thehen the particles feel the Yukawa part of the effective in-
Hansen—Verlet criteriof? which states that the fluid crystal- teraction but it breaks down for higher densities. This finding
lizes when the main peak of the structure factor attains thés in line with recent results on the phase behavior of ionic
value 2.85. The present calculation is more accurate, in theicrogels®’ The ultrasoft interaction is responsible for stabi-
sense that it is based on the free energies of the varioliing a number of exotic phases, including a small domain
phases. A comparison with the rough phase diagram derivedf stability of the diamond lattice. The occurrence of unusual
before?! allows us also to test the reliability of the Hansen- crystal structures for systems interacting by means of ultra-
Verlet freezing criterion. Although the latter has been proversoft potentials has been explicitly confirmed in star
to be rather accurate for systems interacting with “hard”polymeré®® and microgels$’ Some general physical and
interactions, it has been shown to lose its validity for thegeometrical arguments supporting the stability of such
high-density crystals of ultrasoft systems, such as ioniphases have been put forward recently by Ziherl and
microgels®’ Kamien38:3°

We have kept the charging fraction fixedeat 1/3 vary- The system remains always fluid for small arm numbers
ing the functionality and the density. The resulting phaseor/and small densities. Switching to larger functionalities, we
diagram is shown in Fig. 12. The solid phases have nearlpbserve a sequence of several reentrant melting transitions

V. THE PHASE DIAGRAM
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keeping the arm number fixed at abdut 15. We found no  Transregio-Sonderforschungsbereich SFB-TR6, “Physics of
stable crystal phases fér=10, thus the ‘critical functional- Colloidal Dispersions in External Fields,” Subproject C3.

ity’ f. below which no freezing is possible lies in our case in

the interval 16<f.<15. Note that, for neutral star ApPPENDIX: ON THE CONSISTENCY BETWEEN

polymers?? this quantity has the valuk.=34. The fact that THE A-INTEGRATION AND THE COMPRESSIBILITY
charged stars crystallize more easily than neutral ones h&0UTES TO THE FREE ENERGY

been already conjectured in Ref. 8 and reflects the fact that

. . . In this Appendix we briefly discuss the question of the
the effective repulsion of charged stars is stronger than that . . .
: . . D3 consistency between the compressibility obtained from the
of neutral ones at a given dimensionless denpily”. Fi-

nally, we remark that we anticipate that the phase diagram oIPw-k—hmlt of the structure factor and that derived by differ-

Fig. 12 will maintain its topology also for different charging entiating the free energy obtained through Mitegration

; L : . route described in Sec. IlIB. Consider a multicomponent
fractionsa. The main difference will be an expansion of the . ; . S
mixture, in which all but one remaining componédtzabeled

domain of stability of the fluid phase for decreastagsince ‘1') have been traced out, so that one ends with an effective

in this case the effective interaction becomes less repulsive - o ;
description of the remaining one-component system via an

effective HamiltoniarH . If the integration of all other de-
VI. CONCLUSIONS grees of freedom is carried out exactly, then the pair corre-

We have presented calculations on the structural andtion functionsg;(r) andS,;(k) remain invariant under the
thermodynamic properties of osmotic polyelectrolyte starsCross over to an effective descriptiéh® For mixtures of
based on a coarse-grained description that employs effectivgutral species, in which the particle number for each com-
interactions between the star centers. The anomalous strugonent can fluctuate independently of that for the other, the
ture that characterizes concentrated PE-star solutions has Rartial osmotic compressibility of species # is given by
physical origins at the ultrasoft character of the effective in-
teraction potential and also at its particular density depen-  p kgTx{"=S,,(k=0), (A1)
dence. In principle, the findings of our work should be veri-
fiable in scattering experiments in which only the centers ofwhereas in order to obtain thetal compressibility of the
the stars are visible and scattering from the chains and theulticomponent mixture, additional information about the
counterions is suppressed. Our theory provides indeed aependence of the osmotic pressure on the activities of the
explanation for the anomalous behavior of the main pealintegrated components is necessar@n the other hand, if
position of the interstar structure factor reported in Ref. 190one deals with a two-component, salt-free, electroneutral
Certainly, more work is desirable on the experimental side irmixture of charged spheres, the total compressibjityis
deriving reliable structure factors that can be compared witlindeed obtainable vi&;,(k) alone, since the long-range na-
the theoretical ones in a wide range of wave vectors anture of the Coulomb interaction, the electroneutrality and the

concentrations. perfect-screening conditions, lead to the réSult
The theoretical predictions for the richness of the phase
diagram and the occurrence of various crystalline phases can k. Ty;=S,,(k=0), (A2)

also be experimentally tested, whereby the synthesis of PE

stars with a high degree of monodispersity is very importantwhere we have used the symbglfor the number density of
since polydispersity can destroy crystalline order. In prin-species 1the star centejs

ciple, our effective potential can also be employed in a study At the same time, from the thermodynamic definition of
of the glass transition of the PE solution, in full analogy with the compressibility, we obtain

the case of neutral star polyméfsThe explicit density de-

pendence of the pair potential and the irrelevance of the vol- pkeTxr= 1

ume terms in calculating the ergodic-to-nonergodic transition psBt"(ps)’
within the framework of mode-coupling theory may lead in ) ) )
this case to an unexpected behavior of the vitrification line ofVith the free energy densitf(py) and the primes denoting
the system at hand. Finally, we comment that although ngfferent|§1t|on with respect to the argqment. We have tested
have neglected the ubiquitous many-body forces between P{B€ consistency between structure anhtegration route by
stars and based our analysis exclusively on pair potential§@lculating the quantitpkgTx directly from Eq.(A2) us-

our calculations shoff that three-body forces become ap- N9 Rogers-Young structural data and from EA43) by tak-
preciable only at concentrations exceedistty by a factor INg the second derivative of the free energy obtained from
3—4, hence we expect all predictions presented in this workhe A-integration route. The comparison is shown in Fig. 13.

to maintain their validity also in the presence of many-body!t ¢@n be seen that the two are in fairly good agreement with
terms in the interaction potential. one another throughout the broad concentration range and

only at very small densities do considerable deviations ap-
pear. The discrepancies are most likely due to inaccuracies in
the derivation of the effective interaction potential. Discrep-
The authors thank Arben Jusufi and Dieter Gottwald forancies between the two routes could also arise from the ap-
helpful discussions. This work was supported by theproximate nature of the Rogers-Young closure used to calcu-
Deutsche ForschungsgemeinschafDFG), within the late structural data, however, this closure has been shown to
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