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Structure and phase behavior of polyelectrolyte star solutions
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Düsseldorf D-40225, Germany
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Using the recently developed effective interaction potentials between polyelectrolyte stars, we
examine the structure and phase behavior of solutions of the same. The effective interaction is
ultrasoft and density dependent, owing to the integration of the counterionic degrees of freedom.
The latter contribute extensive volume terms that must be taken into account in drawing the phase
diagram of the system. The structural behavior of the uniform fluid is characterized by anomalous
structure factors, akin to those found previously for solutions of uncharged star polymers. The phase
diagram of the system is very rich, featuring a fluid phase at low arm numbers of the stars, two
reentrant melting regions, as well as a variety of crystal structures with unusual symmetry. The
physical origin of these features can be traced back to the ultrasoft nature of the effective interaction
potential. © 2004 American Institute of Physics.@DOI: 10.1063/1.1790451#

I. INTRODUCTION

The two most commonly used mechanisms for stabiliz-
ing colloidal suspensions against flocculation caused by the
dipole-dipole dispersion forces are charge stabilization and
steric stabilization. In the former case, the charge on the
colloidal particles is responsible for an electrostatic repulsion
~screened by the counterions in the solution! which sup-
presses the dispersion attraction. In the latter case, polymer
chains grafted or adsorbed on the surface of the colloids
provide a repulsive barrier against coagulation due to their
mutual excluded-volume interactions. The two stabilization
mechanisms can be combined by grafting charged polymer
chains orpolyelectrolytes~PEs! on the colloids and in this
way spherical polyelectrolyte brushes are formed. Spherical
PE brushes are flexible systems which can assume a large
number of different conformations, depending on the values
of the physical parameters of the system. When the size of
the colloidal particle,Rc , is much larger than the brush
height L, one speaks ofcrew-cut brushes, whereas in the
opposite limit,Rc!L, one obtainspolyelectrolyte stars. Ex-
perimentally, PE brushes can be realized either by physically
grafting PEs on a hard colloid or by using block copolymers
with one hydrophobic neutral block and one charged block.
In this case, charged block copolymer micelles result, which
closely resemble PE brushes.

In dealing with spherical PE brushes or stars, one distin-
guishes between weak orannealed ones and strong or
quenchedones.1 In the former case, the ionization constant
of the monomers is low, hence the actual charge on the brush
depends on the local electrostatic conditions, due to the pos-
sibility of charge recombination. In the latter case, the ion-
ization constant is high and hence the charge on the brushes
is constant, irrespective of the details of the system. A con-
siderable number of studies have been dedicated to the
analysis of the sizes and conformations of spherical PE
brushes and stars, since the number of physical parameters to
be tuned~chain length, degree of ionization,pH and salinity

of the solution, solvent quality, temperature! is large and a
corresponding flexibility in the possible conformation re-
sults. Pincus was the first to assume that quenched PE stars
with a high charging fraction would be characterized by
strongly stretched chains and an absorption of the majority of
the dissolved counterions.2 Klein Wolterink et al.1,3 as well
as Borisov and Zhulina4,5 applied scaling theory and self-
consistent field~SCF! calculations to study the conforma-
tions of PE stars. One important finding of these works is the
stretching of the chains and the absorption of counterions for
strongly charged, quenched chains. PE stars falling in this
regime are calledosmotic.6 The rodlike character of the
chains in osmotic PE stars was also confirmed in extensive
molecular dynamics~MD! simulations of Jusufiet al.7,8 and
in the Monte Carlo~MC! simulations of Rogeret al.9 Re-
cently, Borisov and Zhulina have also put forward mean-field
calculations for block copolymer micelles with one neutral
and one charged block, which self-assemble in solution.10–12

There, emphasis was put on the effect of salt on themorpho-
logical transitions from crew-cut to starlike micelles and
even on the geometrical transformations between micelles,
cylinders, and lamellae. However, in this work we consider
PE stars for which the chains are chemically anchored on a
small solid core particle, hence the architecture is fixed and
morphological transitions can be ruled out.

From the experimental point of view, the stretching of
the chains in osmotic PE brushes has been confirmed in
small-angle neutron scattering experiments~SANS! of
Guenounet al.13 A comprehensive SANS study of spherical
micelles with a charged corona was carried out by van der
Maarel co-workers.14–16 It was demonstrated that the coun-
terions remain confined mainly within the corona and that
the charged chains assume a rodlike configuration. Dynamic
light scattering~DLS! studies of the corona size for both
quenched and annealed PE brushes were carried out by Guo
and Ballauff,17 who found that with increasingpH annealed
brushes exhibit a transition to fully stretched chains. Finally,
recent anomalous small-angle x-ray scattering experiments
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~ASAXS! by Dingenoutset al.18 have demonstrated that the
density profile of the trapped counterions follows that of the
charged monomers along the chains, in agreement with pre-
dictions from theory and simulations.7,8

Although the conformational regimes of PE stars and
brushes have thus been studied to a considerable extent, very
little is known about the correlations between PE stars in
concentrated solutions and about the phase behavior of the
latter. In their recent SAXS experiments from salt-free solu-
tions of star-branched polyelectrolytes, Heinrichet al. found
an anomalous behavior of the position of the main peak of
the interstar structure factor.19 In particular, although below
the overlap concentration its position scales with the one-
third power of the concentration, it shows a much weaker
dependence on the density thereafter. In order to understand
theoretically the features of the interstar correlations, a
coarse-graining approach is necessary, in which the chains
and the counterions are traced out, leaving behind only the
star centers as relevant degrees of freedom. These interact by
means of an effective potential that has its physical origin on
the integrated-out degrees of freedom.20 This coarse-graining
approach was carried out recently by Jusufiet al.,7,8 bridging
the gap from the microscopic to the mesoscopic description
of the system. The purpose of this work is to carry now the
next step in the bridging of the length scales and go from the
mesoscopic to the macroscopic scale. In particular, by em-
ploying the effective interactions derived in Ref. 8, we study
systematically the nature of the pair correlations and we de-
termine the thermodynamics of the fluid state. By comparing
with the free energies of many candidate crystalline phases,
we then draw the phase diagram of the system and find a
host of unusual crystal structures and a rich topology of the
phases.

The rest of the paper is organized as follows: In Sec. II,
we first briefly review the derivation of the effective pair
potential for the two-body problem, generalizing it after-
wards to the many-body system and deriving the Hamil-
tonian that includes an extensive, coordinate-independent
volume term. In Sec. III we apply standard tools from liquid-
state theory to derive the structure and thermodynamics of
the fluid state, whereas a harmonic theory is applied in Sec.
IV in order to calculate the free energies of various crystal-
line phases. On this basis, the phase diagram of the system is
drawn and discussed in Sec. V. Finally, in Sec. VI we sum-
marize and conclude. Some technical considerations regard-
ing the compressibility of the system are presented in the
Appendix.

II. THE EFFECTIVE HAMILTONIAN

In this section, we briefly review the theoretical model
that has led on the one hand to the determination of the
properties of isolated PE stars and on the other hand to the
derivation of an effective interaction potentialVeff(D) be-
tween the star centers, whereD denotes their mutual separa-
tion. As far as the derivation of the effective potential is
concerned, we limit ourselves to an outline and refer the
reader to Refs. 7, 8, and 21 for details. We then employ the
pair potential approximation in order to write down the ef-

fective Hamiltonian of the many-body system, taking into
consideration the extensive terms that arise from integrating
out the microscopic degrees of freedom of the system.

A. Determination of the pair interaction potential

We consider PE stars at room temperatureT, dissolved
in an aqueous solvent. Here we consider exclusively the salt-
free case but the procedure for deriving effective interactions
in the presence of salt has also been worked out and can be
found in Ref. 8. LetNs be the number of PE stars dissolved
in the macroscopic volumeV occupied by the system and
rs5Ns/V their density. Every chain of the PE star consists
of N monomers and is charged in a periodical manner with
charging fractiona, i.e., every 1/ath monomer along the
chains bears the elementary chargee. The Bjerrum length
lB5e2/(ekBT) has the value 7.1 Å, takinge581 as the
dielectric constant of water, wherekB denotes the Boltzmann
constant. All PE stars have the same functionalityf and ev-
ery chain carriesN monomers. As a result, every star carries
a chargeQ5e f Na, leaving behindNc5a f N monovalent
counterions in the mixture. Every star is envisioned as sphere
of radiusR, surrounded by the Wigner-Seitz sphere of radius
RW . The latter is determined by the densityrs of the solution
through the relationrs53/(4pRW

3 ). The counterions can
therefore be found anywhere in the sphere of radiusRW and
are further partitioned into three different states:N1 cylindri-
cally condensedcounterions are confined to move in narrow
cylinders around the branches of the star;N2 spherically
trappedcounterions can explore the whole interior of the star
with exception of the region for the condensed counterions;
and, finally,N3 counterions can move freely in the bulk of
the solution and are located atR,r ,RW in the model. We
refer to the latter asfree counterions. Clearly,N11N21N3

5a f N. The numbers of counterions in every state as well as
the star radiusR have been determined variationally within a

free energy functionf̃ (R,$Ni%), i 51,2,3, that includes elec-
trostatic, steric as well as entropic contributions from the
counterions.7,8 Introduction of the minimizing values of these
parameters back into the variational free energy allows then
for the determination of the free energyf 1 of an isolated PE
star. Since the counterion distributions vary with the system
density, due to the dependence of the free energy onRW , f 1

becomes a function of the concentration,f 15 f 1(rs). The
presence of this term in the total free energy of an interacting
PE star system is very important for the the phase behavior
of the same, since it gives rise to the so-calledvolume term
of the solution. Thereby, the specific form of the functional
dependence off 1 on rs plays a crucial role in influencing the
convexity of the free energy and the associated possibility of
spontaneous fluid–fluid phase separation with a large density
gap. We will return to this point in Sec. II C below.

We define the overlap densityrs* through the condition
(p/6)rs* s351, with s52R denoting the diameter of the PE
stars, yielding the valuers* s351.91. The effective interac-
tion potentialVeff(D) has been determined by extending the
cell model to two interacting stars and taking into account
the fact that, upon close approaches, the chains of each star
remain stretched but those belonging to different stars do not
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interdigitate.7,8 The approach yields the constrained Helm-
holtz free energyF2(D) of the two interacting stars whose
centers are kept at separationD, and which includesall con-
tributions from the monomers and the counterions. In order
to explicitly fulfill the requirement that the effective interac-
tion vanish at infinite distances,Veff(D) has been defined as8

Veff~D;rs!5F2~D;rs!2F2~D→`;rs!

5F2~D;rs!22 f 1~rs!. ~1!

The second line in Eq.~1! above follows from the fact that
the total free energy of two stars infinitely far apart from one
another is simply twice the free energy of an isolated star.
Important for what follows is theexplicit density dependence
of the interaction potential on the density of the solution,
which stems from the process of carrying out a partial trace
over the microscopic degrees of freedom. Special care has to
be taken whenever effective interaction potentials with ex-
plicit dependence on thermodynamic quantities, such as den-
sity or temperature, are employed,22–25 therefore we need to
elaborate on the physical origin of this dependence.

Below the overlap density,rs,rs* , there is space for the
counterions to move free in the solution. Hence, only a
density dependent fraction of those is trapped~cylindrically
or spherically! within the stars, with the effect that the latter
carry a net charge. Consequently, for interstar distancesD
.s, one obtains an interaction between charged spherical
colloids, screened by the free counterions, that has the form
of a Yukawa potential:Veff

. (D);exp(2kr)/r, where the su-
perscript denotes the conditionD.s. We emphasize here
that the cell model is employed in order to determine the
counterion distribution inside and outside the interacting
stars, as well as the effective interaction for distancesD
,s. ForD.s the interaction isassumedto be of a Yukawa-
type and it isnot derived in the framework of the cell model.
The constantk is the well-known inverse Debye screening
length, given by21

k5A 3N3lB

RW
3 2R3 , ~2!

where it has been taken into account thatonly the N3 free
counterions per star screen the electrostatic interaction. The
density dependence of the branchVeff

. (D;rs) of the effective
potential comes, on the one hand, from the explicitRW de-
pendence ofk in Eq. ~2! above and, on the other, from the
dependence of the number of free counterionsN3 on the
same quantity. The quantityN3 rapidly approaches zero as
rs→rs* but otherwise it has a rather weakrs dependence for
a broad region ofrs,rs* . The branchVeff

, (D;rs), valid for
D,s, contains electrostatic, steric as well as entropic con-
tributions arising mainly from theN2 spherically trapped
counterions of every star. All these quantities vary with the
densityrs of the solution andVeff

, (D;rs) picks up a concomi-
tantrs dependence. The two branches of the effective poten-
tial, Veff

, (D;rs) andVeff
. (D;rs) are matched atD5s under the

condition that the interaction and its derivative with respect
to D be continuous there. For more details in the matching
procedure we refer the reader to Refs. 8 and 21.

Above the overlap density,rs.rs* , things are simpler.
All counterions are now absorbed within the stars, which are
therefore electroneutral. Thus, forD.s, the effective inter-
action potential vanishes identically,Veff

. (D)50. For D,s,
the interaction is governed by the entropic contributions of
the trapped counterions. However, their number does not any
more vary with density: there is no free space in the solution
so that the counterions can partition themselves into free and
trapped, thus there is no dependence ofVeff

, (D) on the con-
centration. Moreover, the procedure for derivingVeff

, (D)
yields in this case a function that smoothly approaches zero
at D5s, so that theVeff

, (D) branch matches with the identi-
cally vanishingVeff

. (D) branch automatically.8 To be explicit,
Veff

, (D) for rs.rs* is given by the expression

bVeff
, ~D !5N2~D !lnS N2~D !

4pH 11
D

s F12 lnS D

s D G J D
1

N2~D !

11
D

s F12 lnS D

s D G
D

s
ln2S D

s D1N2~D !

22N2
(1)F lnS N2

(1)

4p D 11G , ~3!

whereN2(D) is the number of spherically trapped counteri-
ons for two PE stars at distanceD and N2

(1) is the same
quantity for a single PE star. The expression for the quantity
N2(D), which is the number of spherically trapped counte-
rions for two stars at a distanceD, is given in Eq.~37! of
Ref. 8, whereasN2

(1) is given by Eqs.~22! and ~23! in the
same citation.

Summarizing, we are dealing with an effective interac-
tion V(D;rs) that features a dependence on the densityrs

below the overlap concentration and it is free of any density
dependence above the overlap concentration. Quantitatively,
this interaction isultrasoftandbounded, i.e., it grows slower
than any inverse-power law asD→0 and remains finite at
D50. The latter property is associated with the fact that we
ignore the direct interaction between the centers of the stars,
which is of microscopic range and has no effect on the struc-
ture and phase behavior of the macroscopic system. It is
rather the chain- and counterion-mediated effective potential
Veff , whose range is mesoscopic, that determines the behav-
ior of the solution, which will be presented in the following
sections. In Fig. 1, we show the effective potential for PE
stars for two different combinations of functionalitiesf and
charging fractionsa, both below and above the overlap den-
sity. In this figure and all others that follow, the results per-
tain to a degree of chain polymerizationN550. It can be
seen that with increasingrs the interaction becomes softer,
until one reachesrs* , at which point the density dependence
drops out. Moreover, for a given density,Veff becomes more
repulsive asf and/ora grows.

B. The many-body system

Interaction potentials that feature an explicit density de-
pendence have to be treated with special consideration.

7011J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Polyelectrolyte star solutions



Strictly speaking, atrue Hamiltonian function should involve
solely the canonical coordinates of the degrees of freedom
that characterize the system, i.e., the positions and momenta
of the fundamental statistical units constituting the mixture.
In a microscopic description, where all monomers, counteri-
ons, and solvent molecules are considered explicitly, this is
indeed the case. Once, however, some microscopic degrees
of freedom are traced out and one switches over to a meso-
scopic, coarse-grained view of the complex fluid, explicit
dependencies of the effective interaction on thermodynamic
quantities cannot be ruled out. The effective potential loses
then the rigorous meaning it has in a microscopic scale. As it
has been pointed out recently in the literature, in such cases
the effective interaction can only be used in the context in
which it has been derived.22,26 Certain sum rules or paths to
the thermodynamics of the system, such as the compressibil-
ity or virial routes, which are valid and equivalent to one
another for simple fluids, do not necessarily maintain their
validity for density dependent effective potentials.22,23,25 In
fact, they not evenneedto be equivalent to each other. If, for
example, the effective potential has been derived under the
procedure of fitting simulation data for the compressibility of
the system, then it is allowed to calculate the free energy of
the complex fluid via the compressibility route but employ-
ing the virial route for the same effective potential will yield
results that are neither consistent with the compressibility
one nor valid altogether.22 Therefore, it is crucial to specify
the context in which the effective potentialVeff(D;rs) of this
work has been derived.

Our starting point is Eq.~1!. First, consider a solution
containing only two PE stars and letQ2 be the canonical
partition function of the system. The coordinates of the cen-
ters of the two stars are given byRi and their momenta by
Pi , i 51,2. Clearly,D5uR12R2u. The free energy of the
two-star system isF252kBT ln Q2. The quantityF2(D) in
Eq. ~1! is simply the constrained free energy
2kBT ln Q2(R1 ,R2) of the system,20 when the first star is
held fixed at positionR1 and the second at positionR2 . The
constrained partition functionQ2(R1 ,R2) is obtained by
tracing out canonically all other particles while keeping the
star centers fixed. The full partition functionQ2 is then cal-
culated by taking the integral of its constrained counterpart
Q2(R1 ,R2) over all position vectorsR1 , R2 and, in addition,
tracing out canonically the momenta of the two particles, in
order to take into account their kinetic energies once the
constraint of holding them fixed has been lifted. Specifically
we have,20

Q25
h26

2!
V2E E )

i 51

2

d3Pi expS 2
bPi

2

2m D
3

1

V2 E d3R1E d3R2 exp@2bVeff~ uR12R2u;rs!#

3exp@22b f 1~rs!#. ~4!

In Eq. ~4! above,h denotes Planck’s constant,b5(kBT)21,
andm is the mass of the central particle.

We now generalize these considerations to a solution
containingNs PE stars, making further the physical assump-
tion of pair additivity of the interactions. In other words, we
fix the centers of the PE stars at the positionsR1 ,R2 ,...,RNs

~collectively$R%! and we assume that the corresponding con-
strained free energyFNs

($R%) is given, in analogy to Eq.~1!,
by the expression

FNs
~$R%!5

1

2 (
iÞ j

Ns

Veff~ uRi2Rj u;rs!1Nsf 1~rs!. ~5!

The total partition functionQNs
is obtained as the gen-

eralization of Eq.~4! by the relation

QNs
5

h23Ns

Ns!
VNsE dPNs)

i 51

Ns

expS 2
bPi

2

2m D
3

1

VNs E dRNs expF2
b

2 (
iÞ j

Ns

Veff~ uRi2Rj u;rs!G
3exp@2Nsb f 1~rs!#, ~6!

where *dPNs is a shorthand for the multiple integral
**¯*d3P1d3P2¯d3PNs

, and similarly for the position co-
ordinates. LetZNs

denote the second factor on the right-hand
side of Eq.~6! above. The total Helmholtz free energy of the
system,FNs

is given as2kBT ln QNs
and Eq.~6! yields

FNs
5F id1Fex1Fvol

5kBTNs@ ln~rsL
3!21#2kBTlnZNs

1Nsf 1~rs!, ~7!

FIG. 1. The effective interaction potential for PE stars as a function of the
star concentrationrs for two different combinations of the functionalityf
and the charge fractiona. ~a! f 510, a51/4; ~b! f 515, a51/3.
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where L5Abh2/(2pm) is the thermal de Broglie wave-
length. The free energy is thus composed of the ideal partF id

stemming from the kinetic contributions, the excess partFex

caused by the interactionsand an extensive contribution
Fvol5Nsf 1(rs) that constitutes thevolume termof the free
energy.27 Though the latter has no effect on the interstar cor-
relation functions, it does affect the values of thermodynamic
quantities. Hence, the process of integrating out the micro-
scopic degrees of freedom not only brings about a density
dependence of the effective interactions but produces re-
sidual terms in the free energy as well, which cannot be
ignored if one is interested in the full thermodynamics of the
system.

We can now define the effective HamiltonianHeff for
the many-body PE-star solution as

Heff5(
i 51

Ns Pi
2

2m
1

1

2 (
iÞ j

Ns

Veff~ uRi2Rj u;rs!1Nsf 1~rs!. ~8!

According to Eqs.~5!–~7! above, this Hamiltonian fulfills by
its construction the condition of conservation of the total free
energy of the assembly, which can be expressed as

FNs
52kBT lnFh23Ns

Ns!
E dPNsE dRNs exp~2bHeff!G . ~9!

There exist no ambiguities regarding the calculation of ther-
modynamic quantities, such as compressibility, pressure, in-
ternal energy, and so on. Eqs.~8! and~9! are to be considered
together, i.e., our effective Hamiltonian is valid in the con-
text of Eq.~9!: it allows for the calculation of the total free
energy of the system, from which then all relevant thermo-
dynamic quantities can be derived in a standard way. Equa-
tion ~9! is the key expression for the determination of the
correlation functions between the star centers and for the
subsequent derivation of the excess free energyFex in the
fluid state, as will be discussed in Sec. III.

C. The volume term

The stability of uniform phases with respect to a spon-
taneous separation into a dilute and a dense configuration is
determined by the convexity of the fluid free energy density
f fl(rs)[FNs

/V with respect to rs. Defining also f ex

[Fex/V, Eq. ~7! yields

f fl~rs!5kBTrs@ ln~rss
3!21#1 f ex~rs!1 f vol~rs!

13kBTrs ln~L/s!, ~10!

where the volume term,

f vol~rs!5rsf 1~rs!, ~11!

physically includes the free energy contributions from the
integrated-out counterions and monomers of a single star.
Stability with respect to spontaneous phase separation is
guaranteed whenf fl(rs) is convex, i.e.,

f fl9~rs!.0, ~12!

where the primes denote differentiation with respect to the
argument. Should there be phase coexistence between two

states with densitiesrs
A andrs

B , these are determined by the
conditions of equality of pressures and chemical potentials,
which read as

f fl~rs
A!2rs

A f fl8~rs
A!5 f fl~rs

B!2rs
Bf fl8~rs

B!, ~13!

f fl8~rs
A!5 f fl8~rs

B!. ~14!

Any terms in the free energy density that are linear in
rs, such as the last term in Eq.~10!, have evidently no in-
fluence, neither on the stability criterion, Eq.~12!, nor on the
phase boundaries, Eqs.~13! and~14!. Above the overlap con-
centration,rs.rs* , f 1(rs) is a density independent constant,
since there is no possibility for rearrangement of the counte-
rions. Accordingly, f vol(rs) is just a linear function of the
density that does affect the values of the chemical potential
@see Eq.~14!# but has no influence on the phase behavior. A
nontrivial density dependence off vol(rs) occurs for rs

,rs* . As shown in Fig. 2, the volume term is a convex
function of the density in this regime. This additional posi-
tive contribution to the second density derivative of the total
free energy density is of crucial importance for the validity
of the theory. Indeed, due to the fact that the effective inter-
action potentialVeff(D) softens with increasing density, the
sum of the ideal and excess contributions tof fl(rs) turns out
to be a concave function ofrs in the dilute regimers,rs* . If
the volume term were ignored in this case, the apparent vio-
lation of Eq.~12! would imply there is anunphysicalphase
separation between two fluid phases. The volume term guar-
antees, therefore, the stability of the system against sponta-
neous liquid-gas coexistence.

Finally, we remark that the ‘‘cusp’’ off vol(rs) at the
overlap concentrationrs* , which can be seen in Fig. 2, has
its physical origin at a corresponding discontinuity of the
first derivative of the number of free counterions as a func-
tion of the density. Indeed, as mentioned above, forrs

.rs* , N3 vanishes identically, whereas forrs,rs* N3 is a
smooth function ofrs. Thus,N3 , which is the result of a
minimization procedure, is not an analytic function of the
density and shows atrs* a discontinuity in its first derivative,
akin to that occurring for the order parameter in second-order

FIG. 2. The volume termf vol(rs) of PE star solutions as a function of the
densityrs for three different functionalitiesf , as indicated in the legend, and
for fixed charge ratioa51/3. For purposes of visualization, a thermody-
namically irrelevant, linear termCfrs has been added to the volume terms,
with the values of the constantCf also being indicated in the legend.
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phase transitions. This nonanalyticity reflects itself in the dis-
continuity of the first derivative of the functionf vol(rs) at the
overlap density. It is nevertheless immaterial for the full ther-
modynamics of the system because it is compensated by a
corresponding discontinuity of the opposite sign for the ex-
cess free energy termf ex(rs).

III. THE UNIFORM FLUID

In this section we use the above-derived effective Hamil-
tonian in order to calculate the pair structure as well as the
free energy of uniform fluid phases of PE-star solutions. The
structural data yield information on the correlations in the
fluid, which show anomalies associated with the ultrasoft
character of the pair interaction and with its peculiar density
dependence. The free energy will be useful in drawing the
phase diagram of the system.

A. Structure

As far as pair correlations are concerned, the basic quan-
tity is the two-particle density operatorr̂ (2)(r1 ,r2), defined
through

r̂ (2)~r1 ,r2 ;$R%!5(
iÞ j

Ns

d~r12Ri !d~r22Rj !. ~15!

The expectation valuêr̂ (2)(r1 ,r2 ;$R%)& of this operator is
the two-particle density of the system,r (2)(r1 ,r2) which,
for a translationally invariant fluid, depends only onr
[ur12r2u. The radial distribution function~rdf!, g(r ;rs), is
defined as

r (2)~r !5rs
2g~r ;rs!. ~16!

Introducing, moreover, the correlation functionh(r ;rs) as
h(r ;rs)5g(r ;rs)21, the structure factorS(k;rs) is defined
as

S~k;rs!511rsE d3r exp~2 ik•r !h~r ;rs!. ~17!

As is clear from Eqs.~8! and ~9!, the calculation of ex-
pectation values of quantities depending on the coordinates
$R%, such as the two-particle density operator in Eq.~15!,
involves the same standard rules that are valid for density
independent interaction potentials. At a given, fixed density
rs, the latter acts simply as a parameter in the effective
Hamiltonian that influences the form of the interaction.
Hence, standard closure relations can be used to determine
the pair structure of the fluid. In this work, we have em-
ployed the Rogers–Young closure28 that interpolates be-
tween the Percus–Yevick and the hypernetted chain closures
and contains an adjustable parameterz. For density indepen-
dent potentials,z is fixed by the requirement of thermody-
namic consistency between the compressibility and virial
pressure routes to the free energy of the system. In the case
at hand, where the interaction is density dependent, the virial
route is not valid,22–25although the compressibility should be
preserved if the correlation functions of the star centers re-
main invariant under the process of tracing out the mono-
mers and the counterions.29 However, the pair structure of
our system at a given densityrs is identical to that of an

imaginary fluid with a density-independent interaction which
coincides with the potentialVeff(D;rs). For this second fluid,
enforcing the consistency of the compressibility and virial
routes leads to a higher accuracy in the calculation of the pair
structure. We follow, therefore, the procedure of enforcing
consistency between the two routes, although none of them
holds for the true system, with the single purpose of obtain-
ing accurate pair correlations. The free energy of the system
is subsequently calculated in an alternative way~see Sec.
III B !, which involve neither the pressure nor the compress-
ibility routes.

In Fig. 3 we show the rdfg(r ) for three densities below
the overlap valuers* . A striking feature is that, in contrast to
usual fluids, the height of the main peak ofg(r ) decreases
with density, although its position moves towards smaller
values ofr . The second effect reflects the natural decrease in
the nearest-neighbor distance within the fluid upon increase
of the density. In atomic fluids, though, where the potential is
steep and density independent, this is accompanied by a
strengthening of the correlations. The opposite effect occurs
here and it is a consequence of the fact that the effective
potentialVeff(D;rs) becomessofterasrs grows, see Fig. 1.

Beyond the overlap density, an anomalous behavior of
the fluid develops. This is first investigated by means of the
rdf. In Fig. 4 we show the rdfs for a variety of densitiesrs

.rs* . As seen there, the position of the main peak ofg(r )
ceases to decrease with growing density. Instead, a different
development occurs: first a ‘‘shoulder’’ develops on the flank
of the main peak ofg(r ), as can be seen in Fig. 4 forrss

3

54.0. Subsequently this shoulder grows into a new peak
located at a distance smaller than the typical interparticle
separation. In doing so, the height of the new peak steadily
grows with increasing density, whereas the peak height of the
main peak falls off. By further increasing the density the new
peak surpasses the original main peak in height. This is char-
acteristic for the anomalous fluid behavior, having its origin
at the ultrasoft nature of the pair potential and being very
similar to that seen for neutral star polymers.30 The position
of the second peak is not at twice the distance of the first
peak, as occurs in the case of normal fluids. This is due to the
fact that the position of the former is determined by the star

FIG. 3. The rdfg(r ) for PE-star solution for the arm numberf 515 and
charging fractiona51/3. The density decreases from the left to the right,
but remains below the overlap concentrationrs* in all cases.
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diameters whereas the the position of the latter expresses a
local clustering in the ultrasoft fluid. Each cluster is formed
by particles at typical distancess from a given, central one.
The balance between the repulsions due to the neighbors
outside the cluster and the soft repulsion from the internal
ones determines the position of the first peak ofg(r ), which
is therefore not identical to the mean interparticle distancea.
For densities above the overlap density it is energetically
preferable to keep as many as possible particles outside of
the star diameter of another particle. This helps reduce the
energy of the whole system. Hence, the second peak of the
rdf is located close tor 5s, where the potential is weak,
since it has to vanish forr .s.

The anomaly ofg(r ) is reflected in the development and
shape of the structure factorS(k), as shown in Fig. 5. For
densities far below the overlap density, the main peak shifts
towards larger wave number for increasing density, as known
for normal liquids. Close to the densityrs* s351.91, the
height of the main peak falls off, see Fig. 6~a!. This is, once
more, a reflection of the softening of the density dependent
interaction potentialVeff(D;rs) with increasing density.

For rs.rs* , an anomalous evolution ofS(k) is ob-
served, closely resembling the behavior seen for neutral star
polymers. The height of the main peak decreases for increas-
ing density and at the same time that of the second peak
increases, surpassing the first one in height. This anomalous
behavior ofS(k) can be explained by the two length scales
present in the problem. On the one hand, there is the density

dependent length scalea>rs
21/3, setting the typical interpar-

ticle distance in a normal fluid. On the other hand, we have a
density-independent length scale, set by the star diameters,
beyond which the interaction potential above the overlap
density vanishes. Forrs,rs* , the particles move essentially
within the Yukawa tails of the effective potential and they do
not experience the ultrasoft core of the interaction. There, the
pair correlations of the system are dominated by the length
scalea. For rs.rs* , both length scales play a role and the
structure factor develops anomalies, see Fig. 6~b!. Let us
denote bykn the position of thenth peak of the structure

FIG. 4. The rdfg(r ) for a PE-star solution forf 515 anda51/3 for various
densities exceeding the overlap valuers* .

FIG. 5. The structure factorS(k) for PE-star solution forf 515 and charg-
ing fractiona51/3 as function of the dimensionless wave vectorks. The
density grows from the left to the right.

FIG. 6. The structure factorS(k) of PE star solutions.~a! for densities
below r* and~b! for densities abover* . As in Fig. 5, the parameters here
are: f 515 anda51/3.
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factor. The position of the first peak ofS(k) is set by the
length scales, i.e., k1'2p/s. The length scales2a sets
the position of the second peak, i.e.,k2'2p/(s2a). As
demonstrated in Figs. 5 and 6~b!, the position of the first
peak remains nearly constant, whereask2 decreases with in-
creasing density. This effect is due to the increase of the
quantitys2a's2rs

21/3 with rs.
According to the above analysis, we can now surmise

that the first peak of the structure factor disappears altogether
if we tune the density in such a way that the two length
scales,a and s2a roughly coincide, i.e.,s52a. This
should occur wheng(r ) shows exactly two oscillations of
wavelengtha betweenr 50 andr 5s. In Fig. 7~a! we show
the rdf for rss

3511.2, which shows precisely two
oscillations31 in the interval @0,s#. We call this density
‘‘magic’’ density r2 , where the index labels the number of
oscillations between 0 ands. Concomitantly, the structure
factor has an extremely high peak for this density value,
which is located at the position 2p/a'4p/s. In Fig. 7~b!,
we showS(k) at rs5r2 , together withS(k) at density for
rss

358, in order to illustrate the disappearance and replace-
ment of the first peak through the second one. The anomaly
of S(k) is twofold. On the one hand, the successive peaks are
not located at positions that are integer multiples of one an-
other. On the other hand, the heights of the peaks evolve in a
peculiar way, a peak appearing as the highest in a certain
range of densities, then losing in height in order to be re-
placed by the next one as the highest, and so on.

It is challenging to investigate what happens if the den-
sity is further increased. Does the new main peak increase
further indicating a freezing of the whole system, or does the
scenario observed for the first peak repeat? We have solved
the RY closure up to the densityrs590, finding out the the
second possibility materializes. The height of the main peak
falls off and the originally third peak becomes the highest
one by further increasing the density, as demonstrated in Fig.
8~b!. This behavior can be attributed to development of more
and more oscillations ofg(r ) in the interval@0,s#, see Fig.
8~a!. One can repeat the argument for the magic densityr2 :
the structure factorS(k) will be dominated by a single length
scale if there is an integer numberm of oscillations ing(r )
within the interval@0;s#. This occurs for a sequence of magic
densitiesrm , the index denoting the number of the afore-
mentioned oscillations. Knowing the magic densityr2 , it is
an easy exercise to show that therm is related tor2 through

rm5S m

2 D 3

r2 , m53,4,5,... . ~18!

Using r2s3511.2 we obtainr3s3537.8 andr4s3589.6.
The above results can be nicely summarized in a double

logarithmic plot. In Fig. 9 we show the first few peak posi-
tions of S(k) as function of the density; we stress that when
we talk about thenth peak we actually mean the peak which
is thenth peak at lower densities, where the system behaves
as a normal fluid. The reason is the disappearance and re-
placement of the ‘‘first’’ peaks through peaks of higher or-

FIG. 7. ~a! The rdfg(r ) and~b! the structure factorS(k) obtained by the RY
closure forrss

35r2511.2. In~b!, the structure factor atrss
358.0 is also

plotted for comparison.

FIG. 8. ~a! The radial distribution functiong(r ) and~b! the structure factor
S(k) for the three magic density valuesrm , m52,3,4 defined in Eq.~18! of
the text. The results refer to PE stars withf 515 arms and charging fraction
a51/3.
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ders. Thus, the maximum of first order becomes the one of
second order and so on. The filled symbols in Fig. 9 denote
the highest peak. From this figure, we can draw the follow-
ing conclusions: the fluid that interacts by the ultrasoft,
density-dependent potential is normal for all densities
rs&rs* . In this regime, the position of the first maximum
scales with the density ask1;rs

1/3. The maxima of higher
order are located at positionskn5nk1 , meaning that only
one length scale determines the structure of the system.
Above overlap, this is not true anymore; the positions of the
maxima become very insensitive to changes in the density, in
agreement with the experimental observations of Heinrich
et al.19 However, if we extrapolate the line with slope 1/3 to
higher densities, we find that this line passes through the
magic densitiesrm of Eq. ~18!. At these density values, the
two competing length scales of the problem become integer
multiples of one another, yielding again the usual scaling
behavior of the position of the main peak with the density,
kmax;rs

1/3.

B. Thermodynamics

With the ideal termf id(rs) and the volume contribution
f vol(rs) to the free energy density of the fluid already deter-
mined @see Eq.~10!#, we need now to calculate the excess
contribution, f ex(rs) in order to access the full thermody-
namics of the system. As the density dependence of the in-
teraction rules out the application of the compressibility and
virial pressure routes~32! we resort to a different technique
that is valid for the interaction potential at hand. From Eqs.
~8! and~15!, it follows that the interaction part of the Hamil-
tonian can be expressed as

(
iÞ j

Ns

Veff~ uRi2Rj u;rs!

5E d3r 1E d3r 2r̂ (2)~r1 ,r2 ;$R%!Veff~ ur12r2u;rs!. ~19!

Regarding now the excess free energy as a functional of
the interaction potential,Fex5Fex@Veff#, introducing Eq.~19!

above into Eq.~6! and making use of Eq.~7!, we find that
irrespective of the explicit density dependence of the inter-
action, it holds33

dFex@Veff#

dVeff~r1 ,r2 ;rs!
5

1

2
r (2)~ ur12r2u!5

1

2
rs

2g~r ;rs!. ~20!

The last equation provides the so-calledl-integration
route to the excess free energy of the system.33 We introduce
a linear path of ‘charging’ the effective potential that depends
on a parameterl and reads as

Veff
(l)~r1 ,r2 ;rs!5lVeff~r1 ,r2 ;rs!, ~21!

such that forl50 we obtain an ideal system and forl51
the full interacting system. Along this path, Eq.~20! can be
integrated to yield25

f ex~rs!5
1

2
rs

2E d3rVeff~r ;rs!E
0

1

dlg(l)~r ;rs!, ~22!

with g(l)(r ;rs) being the radial distribution function corre-
sponding to the potentiallVeff(r;rs) instead ofVeff(r;rs). For
l50, it is g(0)(r ;r)51, i.e., we have the rdf for a homoge-
neous, noninteracting fluid. Forl51, it holds g(1)(r ;rs)
5g(r ;rs), i.e., we have the rdf of the real system.

We have thus employed Eq.~22! to calculate the excess
part of the free energy. For every densityrs, we have calcu-
lated the family of radial distribution functionsg(l)(r ;r) by
solving the Rogers–Young integral equation, as discussed in
Sec. III. In Fig. 10, we show the resulting excess free energy
density f ex(rs) for charge fractiona51/3. A discussion re-
garding the validity of the compressibility sum rule and a
comparison between thel-integration result and the struc-
tural prediction for the isothermal compressibility of the sys-
tem are shown in the Appendix. Due to the softening of the
effective potential with increasing density below the overlap
concentration, the excess free energy density shows a non-
convex behavior forrs,rs* . Were f ex(rs) to be the only
contribution to the free energy density of the fluid, this con-
cavity would signal spontaneous phase separation into a gas
and a liquid. However, when the ideal and volume terms are
added to the excess contribution, a convex free energy re-
sults, as shown in Fig. 11. Thus, we see that the volume term

FIG. 9. Double logarithmic plot showing the position of the maxima ofS(k)
as a function of the densityrss

3. The filled symbols denote the highest
peak. The arrows on the plot indicate the positions of the magic densities
rm , whereas the arrow on the horizontal axis denotes the overlap density
rs* . The dashed line has slope 1/3.

FIG. 10. The excess free energy densityf ex(rs) of a fluid of PE stars as a
function of the concentrationrs . The results have been obtained through the
l-integration route described in the text and pertain to stars witha51/3.
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here has the effect ofstabilizingthe fluid against phase sepa-
ration, a featureopposite to that observed for charge-
stabilized colloidal suspensions in the presence of salt.34

These differences quite probably arise from the fact that we
are dealing here with penetrable objects rather than with hard
colloids, and also due to the fact that the instability predicted
in Ref. 34 occurs for nonvanishing salt concentration,
whereas we examine a salt-free system here.

IV. CRYSTALLINE PHASES

Having calculated the free energy of the homogeneous,
fluid phase, we turn in this section our attention to that of
various candidate crystalline phases, so as to be able to draw
the phase diagram of the system in what will follow. For the
crystalline solids, we employ the approximate Einstein
model.35,36 The latter is based on the Gibbs–Bogoliubov in-
equality, which relates the Helmholtz free energyF of a
given system described by the~effective! HamiltonianHeff ,
to the Helmholtz free energyF0 of a reference system with
HamiltonianH0 , as

F<F̃[F01^Heff2H0&05F01^Ueff2U0&0 . ~23!

Here,Ueff andU0 stand for the potential energy functions of
the effective and the reference Hamiltonians, respectively,
and thê ...&0 symbol denotes a canonical average performed
with the Hamiltonian of the reference system. This procedure
is useful if~a! a HamiltonianH0 can be found that is close to
that of the real system in the prescribed ordered state;
~b! H0 allows for a straightforward calculation ofF0 and
^H2H0&0 and~c! the reference HamiltonianH0 contains at
least one variational parameter to minimize the right-hand
side of the inequality~23!. As this method only provides an
upper bound for the Helmholtz free energy, the presence of
the variational parameter~s! in H0 is important in optimizing
that upper bound.

Since we are dealing with a soft interaction between PE
stars, the potential energy felt by each particle in the ordered
lattice can be locally approximated by a quadratic function of

its deviation from its equilibrium position. Hence, a har-
monic approximation is justified and we choose as reference
Hamiltonian that of the Einstein model. In this model, the
particles are noninteracting but are bounded to the equilib-
rium lattice positions by harmonic springs of spring constant
j. Thus,H0 reads as

H05(
i 51

N F Pi
2

2m
1

j

2
~Ri2Si !

2G , ~24!

where the set$Si% spans the prescribed lattice. Let also$K i%
be the set of reciprocal lattice vectors~RCVs! of the lattice.
In what follows, the spring constantj plays the role of a
variational parameter and, for noncubic lattices, the size ra-
tios in the conventional unit cell will be used as additional
ones. Since the kinetic energies in the reference and the real
Hamiltonians coincide, we are left to calculate the potential
energy of both systems.

The calculation of the Helmholtz free energy of the har-
monic solid easily yields

F0

N
5

3

2
kBT lnS ã

p D13kBT lnS L

s D , ~25!

where

ã5
bjs2

2
. ~26!

Equally, the calculation of the canonical average of the po-
tential energyU0 is straightforward and we obtain

^U0&0

N
5

3

2
kBT. ~27!

The calculation of̂ Ueff&0 is more involved, but it can nev-
ertheless be reduced to that of one-dimensional integrals as

^Ueff&0

N
5

1

2 (
j Þ0

nj S ã

2p D 1/2 1

Xj
E

0

`

dxVeff~x;rs!x

3$exp@2ã~x2Xj !
2/2#2exp@2ã~x1Xj !

2/2#%.

~28!

The sum on the right-hand side counts all shells of lattice
vectors with the exception ofj 50 ~self-interaction!. The
quantity nj denotes the number of equal lattice vectors be-
longing to the same shell;Xj5uSj u/s are dimensionless lat-
tice vectors and, accordingly,x5D/s. For T50, i.e., in the
limit ã→`, Eq. ~28! reduces to the expression for the lattice
sum

^Ueff&0

N
5

1

2 (
j Þ0

njVeff~Xj !. ~29!

For computation purposes, an alternative expression to
Eq. ~28! is useful. It involves the Fourier transformṼeff(k;rs)
of the effective interaction at wave numberk and reads as

FIG. 11. The total free energy densityf fl(rs)5 f id(rs)1 f ex(rs)1 f vol(rs) for
a PE-star fluid with the same parameters as in Fig. 10. Note that the concave
part and the cusp of the excess free energy contribution are eliminated by
the convexity and the corresponding cusp of the volume term shown in Fig.
2, to produce a smooth curve that is concave-up. For clarity, linear terms of
the form Cfrs have been added to the results, with the values of the con-
stantsCf being denoted in the legend.
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^Ueff&0

N
5

s3

2vc
(
$Q%

exp@2Q2/~2ã !#Ṽeff~Q;rs!

2
1

4p2 E
0

`

dq q2 exp@2q2/~2ã !#Ṽeff~q;rs!,

~30!

where vc denotes the volume of the primitive cell of the
corresponding lattice in direct space,q5ks and $Q% is the
set of all dimensionless reciprocal lattice vectors,Qi5K is.
Equations~28! and~30! are completely equivalent; for weak
localization of the particles around the lattice sites~small ã),
Eq. ~30! is more suitable, since a summation over a few
reciprocal-lattice shells suffices to guarantee convergence of
the sum, whereas for strong localization~large ã), Eq. ~28!
is computationally more convenient.

We tried a large number of candidate crystal structures
with various symmetries and minimized the free energyF̃ of
Eq. ~23! with respect to all variational parameters available.
The lattices we considered were the simple cubic~sc!, the
body-centered-cubic~bcc!, the face-centered-cubic~fcc!, the
body-centered orthogonal~bco!, as well as the hexagonal-
close-packed~hcp! structure, the simple hexagonal~hex!, the
trigonal,37 the diamond, and the A15 lattices.38–40These aug-
ment considerably the set used previously in carrying out
lattice sum (ã→`) calculations.21

With Fmin denoting the value of the variational free en-
ergyF̃ at the minimum with respect to the variational param-
eters, the total free energy of the crystal,Fsol(rs) is finally
obtained by adding toFmin the state-independent volume
term Fvol(rs). The winning phase at fixed density is the one
with the lowest value ofFsol(rs). Finally, the free energy
density f sol(rs) is obtained asFsol(rs)/V.

V. THE PHASE DIAGRAM

With the free energy densities of all phases, fluid, and
solid being available, the phase diagram can be drawn by
performing the common tangent construction on thef fl(rs)
curves andf sol(rs) curves.41 A preliminary phase diagram for
the system at hand has been drawn in Ref. 21. There, the
stable crystalline phases were determined on the basis of
lattice sum calculations only; no minimization of the free
energy was carried out. Moreover, the phase boundary with
the fluid phase has been determined on the basis of the
Hansen–Verlet criterion,42 which states that the fluid crystal-
lizes when the main peak of the structure factor attains the
value 2.85. The present calculation is more accurate, in the
sense that it is based on the free energies of the various
phases. A comparison with the rough phase diagram derived
before,21 allows us also to test the reliability of the Hansen-
Verlet freezing criterion. Although the latter has been proven
to be rather accurate for systems interacting with ‘‘hard’’
interactions, it has been shown to lose its validity for the
high-density crystals of ultrasoft systems, such as ionic
microgels.37

We have kept the charging fraction fixed ata51/3 vary-
ing the functionality and the density. The resulting phase
diagram is shown in Fig. 12. The solid phases have nearly

the same sequence as in the phase diagram obtained by lat-
tice sum calculations.21 For small densities, the fcc lattice is
favored followed by the bcc lattice for increasing density.
Further increasing the density, a body-centered orthogonal
phase appears, which we call bco1 lattice, to differentiate it
from another one that is stable at higher densities. The size
ratios for this bco1 lattice are 1:0.5:0.5, i.e., the crystal has
two equal small edges and one large edge for its conven-
tional unit cell. Due to the equality of the two edges, this is
then abody-centered tetragonal~bct! lattice, with a higher
degree of symmetry than the general bco. In contrast to the
preliminary phase diagram,21 a simple hexagonal lattice
shows up for densitiesrss

3*3.0. For higher densities the
sc, diamond, and, an additional, bco2 lattice turn out to be
stable. The size ratios for the bco2 crystal are 1:1:0.5~two
large edges and one small!, and we have again a bct lattice.
The size ratios for both the bco1 and the bco2 crystals equal
exactly the ones obtained by lattice sum calculations, i.e., the
effects of the finite temperature on the geometry of the crys-
tal are negligible, an effect also seen in the case of neutral
star polymers.43 In summarizing, we can say that the lattice
sum calculation have yielded the same sequence of lattice
types below the overlap concentration, however, new crystal
phases turn out to be stable above the overlap density, where
the ultrasoft part of the interaction potential becomes rel-
evant. Alternatively, the Hansen-Verlet criterion is valid
when the particles feel the Yukawa part of the effective in-
teraction but it breaks down for higher densities. This finding
is in line with recent results on the phase behavior of ionic
microgels.37 The ultrasoft interaction is responsible for stabi-
lizing a number of exotic phases, including a small domain
of stability of the diamond lattice. The occurrence of unusual
crystal structures for systems interacting by means of ultra-
soft potentials has been explicitly confirmed in star
polymers40,43 and microgels.37 Some general physical and
geometrical arguments supporting the stability of such
phases have been put forward recently by Ziherl and
Kamien.38,39

The system remains always fluid for small arm numbers
or/and small densities. Switching to larger functionalities, we
observe a sequence of several reentrant melting transitions

FIG. 12. Phase diagram for PE stars for fixed charging fractiona51/3. The
points denotes the phase transition between different crystal structures, the
squares denote the fluid–solid transition. The density gaps between the co-
existing phases are extremely small, hence they are not shown in the figure.
The lines are guides to the eye.
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keeping the arm number fixed at aboutf '15. We found no
stable crystal phases forf 510, thus the ‘critical functional-
ity’ f c below which no freezing is possible lies in our case in
the interval 10, f c,15. Note that, for neutral star
polymers,43 this quantity has the valuef c534. The fact that
charged stars crystallize more easily than neutral ones has
been already conjectured in Ref. 8 and reflects the fact that
the effective repulsion of charged stars is stronger than that
of neutral ones at a given dimensionless densityrss

3. Fi-
nally, we remark that we anticipate that the phase diagram of
Fig. 12 will maintain its topology also for different charging
fractionsa. The main difference will be an expansion of the
domain of stability of the fluid phase for decreasinga, since
in this case the effective interaction becomes less repulsive.

VI. CONCLUSIONS

We have presented calculations on the structural and
thermodynamic properties of osmotic polyelectrolyte stars,
based on a coarse-grained description that employs effective
interactions between the star centers. The anomalous struc-
ture that characterizes concentrated PE-star solutions has its
physical origins at the ultrasoft character of the effective in-
teraction potential and also at its particular density depen-
dence. In principle, the findings of our work should be veri-
fiable in scattering experiments in which only the centers of
the stars are visible and scattering from the chains and the
counterions is suppressed. Our theory provides indeed an
explanation for the anomalous behavior of the main peak
position of the interstar structure factor reported in Ref. 19.
Certainly, more work is desirable on the experimental side in
deriving reliable structure factors that can be compared with
the theoretical ones in a wide range of wave vectors and
concentrations.

The theoretical predictions for the richness of the phase
diagram and the occurrence of various crystalline phases can
also be experimentally tested, whereby the synthesis of PE
stars with a high degree of monodispersity is very important,
since polydispersity can destroy crystalline order. In prin-
ciple, our effective potential can also be employed in a study
of the glass transition of the PE solution, in full analogy with
the case of neutral star polymers.44 The explicit density de-
pendence of the pair potential and the irrelevance of the vol-
ume terms in calculating the ergodic-to-nonergodic transition
within the framework of mode-coupling theory may lead in
this case to an unexpected behavior of the vitrification line of
the system at hand. Finally, we comment that although we
have neglected the ubiquitous many-body forces between PE
stars and based our analysis exclusively on pair potentials,
our calculations show45 that three-body forces become ap-
preciable only at concentrations exceedingrs* by a factor
3–4, hence we expect all predictions presented in this work
to maintain their validity also in the presence of many-body
terms in the interaction potential.
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APPENDIX: ON THE CONSISTENCY BETWEEN
THE l-INTEGRATION AND THE COMPRESSIBILITY
ROUTES TO THE FREE ENERGY

In this Appendix we briefly discuss the question of the
consistency between the compressibility obtained from the
low-k-limit of the structure factor and that derived by differ-
entiating the free energy obtained through thel-integration
route described in Sec. III B. Consider a multicomponent
mixture, in which all but one remaining component~labeled
‘1’ ! have been traced out, so that one ends with an effective
description of the remaining one-component system via an
effective HamiltonianHeff . If the integration of all other de-
grees of freedom is carried out exactly, then the pair corre-
lation functionsg11(r ) andS11(k) remain invariant under the
cross over to an effective description.20,29 For mixtures of
neutral species, in which the particle number for each com-
ponent can fluctuate independently of that for the other, the
partial osmotic compressibility of species 1,xT

(1) is given by

r1kBTxT
(1)5S11~k50!, ~A1!

whereas in order to obtain thetotal compressibility of the
multicomponent mixture, additional information about the
dependence of the osmotic pressure on the activities of the
integrated components is necessary.29 On the other hand, if
one deals with a two-component, salt-free, electroneutral
mixture of charged spheres, the total compressibilityxT is
indeed obtainable viaS11(k) alone, since the long-range na-
ture of the Coulomb interaction, the electroneutrality and the
perfect-screening conditions, lead to the result46

rskBTxT5S11~k50!, ~A2!

where we have used the symbolrs for the number density of
species 1~the star centers!.

At the same time, from the thermodynamic definition of
the compressibility, we obtain

rskBTxT5
1

rsb f 9~rs!
, ~A3!

with the free energy densityf (rs) and the primes denoting
differentiation with respect to the argument. We have tested
the consistency between structure andl-integration route by
calculating the quantityrskBTxT directly from Eq.~A2! us-
ing Rogers-Young structural data and from Eq.~A3! by tak-
ing the second derivative of the free energy obtained from
thel-integration route. The comparison is shown in Fig. 13.
It can be seen that the two are in fairly good agreement with
one another throughout the broad concentration range and
only at very small densities do considerable deviations ap-
pear. The discrepancies are most likely due to inaccuracies in
the derivation of the effective interaction potential. Discrep-
ancies between the two routes could also arise from the ap-
proximate nature of the Rogers-Young closure used to calcu-
late structural data, however, this closure has been shown to
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be very accurate for purely repulsive interactions. Hence, we
tend to believe that it is rather the approximate character of
the pair potential that leads to the difference between the
compressibility andl-integration routes. Notice that the
‘noisy’ result for thel integration is a consequence of taking
a second derivative numerically.
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