EPJ manuscript No.
Scale-Bridging Techniques in Molecular Simulation

Practical and conceptual path sampling issues

P.G. Bolhuis''® and C. Dellago?

'van 't Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling,

Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria

Abstract. In the past 15 years transition path sampling (TPS) has
evolved from its basic algorithm to an entire collection of methods
and a framework for investigating rare events in complex systems. The
methodology is applicable to a wide variety of systems and processes,
ranging from transitions in small clusters or molecules to chemical re-
actions, phase transitions, and conformational changes in biomolecules.
The basic idea of TPS is to harvest dynamical unbiased trajectories that
connect a reactant with a product, by a Markov Chain Monte Carlo
procedure called shooting. This simple importance sampling yields the
rate constants, the free energy surface, insight in the mechanism of
the rare event of interest, and by using the concept of the committor,
also access to the reaction coordinate. In the last decade extensions
to TPS have been developed, notably the transition interface sampling
(TIS) methods, and its generalization multiple state TIS. Combination
with advanced sampling methods such as replica exchange and the
Wang-Landau algorithm, among others, improves sampling efficiency.
Notwithstanding the success of TPS, there are issues left to discuss,
and, despite the method’s apparent simplicity, many pitfalls to avoid.
This paper discusses several of these issues and pitfalls: the choice of
stable states and interface order parameters, the problem of positioning
the TPS windows and TIS interfaces, the matter of convergence of the
path ensemble, the matter of kinetic traps, and the question whether
TPS is able to investigate and sample Markov state models. We also
review the reweighting technique used to join path ensembles. Finally
we discuss the use of the sampled path ensemble to obtain reaction
coordinates.

1 Introduction

Using molecular simulation, a short hand for particle-based computer simulation,
one can predict not only static properties of matter, such as equilibrium thermody-
namics and mechanics, but also microscopic dynamical properties and kinetics[1]. The
method of choice for the latter is molecular dynamics (MD), a microscopic time evolu-
tion of Hamilton’s equation of motion for all particles in the system[2]. However, while
force-field based all-atom molecular dynamics often demands short time steps, many
processes in nature take place on much longer time scales. These timescales are often
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caused by high free energy barriers between meta-stable states. Classical examples of
this are nucleated phase transitions, chemical reactions, and biomolecular isomerisa-
tion. The long time-scales often make a direct approach of MD impractical. Therefore
many computational techniques were developed to overcome the high barriers, for in-
stance by biasing the system to move along a coordinate which drives the system over
the barrier[1]. However, the choice of coordinate can severly alter the outcome of the
simulation (see Ref. [3] for a discussion). To avoid this problem one can, instead of
sampling configurations, focus on pathways between two states. By sampling these
pathways one could get insight in the mechanism of the reaction. Action sampling[4],
nudged elastic band[5,6], string methods[7,8] all belong to this category. In the late
1990’s Chandler and coworkers invented the transition path sampling method as a
means to investigate the mechanism of an activated event in a complex system[9-12,
3]. The method creates, via a random walk Markov Chain Monte Carlo process, an
ensemble of unbiased trajectories between predefined initial and final states, which
can be analyzed in terms of mechanism and kinetics. TPS achieves this by modify-
ing an existing pathway by a procedure called shooting, and accepting or rejecting
according to a Metropolis rule[9,10]. Since its inception the transition path sampling
method has become a framework for investigating rare events using trajectories. Be-
cause its premise is rather straightforward, namely, enhanced sampling of paths, there
have been many improvements and altered methods based on TPS, notably TIS[13—
15], PPTIS[16], FFS[17,18], NEUS[19], RETIS|[20,21], and STePS[22]. However, this
review is not aimed at giving an in depth overview of the different methodologies
for trajectory-based sampling. We refer the readers interested in such a review to
Ref.[23]. Also, we do not aim to provide a technical overview of the methods. For
that we refer to Refs.[24,25]. Rather, we discuss some issues that have turned out to
be important over the years in implementing the method, despite its apparent sim-
plicity. We also discus some misconceptions, and list some intrinsic problems in TPS
of complex systems, and their solutions. The paper is organized as follows. We start
with a short recollection of the advantages of path sampling. Then, in section 3, we
discuss several issues, misconceptions, and problems arising in the sampling of paths.
In section 4 we give a short (slightly technical) overview of the reweighting schemes
used for TIS. Finally we discuss strategies for reaction coordinate analysis in section
5. We end with concluding remarks.

2 Advantage of TPS and related methods
2.1 No reaction coordinate required

The TPS method biggest selling point is that instead of imposing the reaction coordi-
nate by biasing along a chosen collective variable (named the order parameter!), the
method only requires a definition for the stable states and selects its own unbiased
transition trajectories [3]. Randomly selecting a ’shooting point configuration from
an initial trajectory TPS creates a new trial trajectory by integrating the equations
of motions of the unbiased dynamics forward and backward in time. This unbiased
dynamics can be deterministic, or stochastic, or any other dynamics, as long as it

! In this work we distinguish between the concepts of order parameter, collective variable
and reaction coordinate. A collective variable is any function of the particle coordinates,
whereas the term order parameter is here reserved for a collective variable that describes a
high dimensional hyper-surface to define a stable state or interface, or to drive a biased free
energy computation. A reaction coordinate is a (combination of) collective variable(s) that
describes the reaction progress. See section 5 for a discussion.
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obeys microscopic reversibility. The new trial trajectory can be accepted according to
a Metropolis rule. In the simplest version, the Metropolis rule amounts to accepting
a trial path when it connects the stable states, and reject. In this way, the technique
leads to the same rare event trajectories, as a straightforward MD would have done,
only exponentially faster, at a fraction of the computational cost. In this way, the
technique leads to the same rare event trajectories as a straightforward MD would
have done, only exponentially faster, at a fraction of the computational cost. In a
post-processing analysis the reaction coordinate can be deduced from the resulting
path ensemble, for instance using neural network technology, machine learning, or
simple likelihood maximization (see section 5). Even simply plotting trajectories in
different collective variable spaces already can lead to much qualitative insight, for
instance about the order of events, or whether a certain transition is fast or slow.
Because an ensemble creates many paths, one quickly looses track of the individual
path. To show the most likely mechanism one can make us of a path density plot,
which shows the density of paths as function of multiple collective variables?[26,27].

2.2 TPS and TIS give correct rate (recrossings are counted)

Slowly constraining the path ensemble from being completely free toward a transition
path ensemble connecting the initial and final state, a procedure akin to a reversible
work integration, allows extraction of the rate constant for any activated process|9,
12]. In this integration the transmission coefficient correction to the transition state
theory rate constant estimate is taken into account exactly. The TPS rate computa-
tion thus accounts for recrossings, trajectories that cross the barrier but still return
to their state of origin. In contrast, a transition state theory based approach rely-
ing on computation of the free energy barrier, does not take such recrossings into
account. The contributions of recrossings to the rate can be substantial when the or-
der parameter along which the free energy computation is performed, is not the true
reaction coordinate. This correcting factor can easily be of 3 orders of magnitude
because when an order parameter is not sufficient to describe the so-called dividing
surface (the hyper-surface that separates the products from the reactants) a simula-
tion constrained at a particular order parameter value believed to be the TS, will still
suffer from rare event dynamics and mostly will stay in either one of the basins. This
situation is much more likely than one would think, certainly for complex systems, as
there is simply no way that a single order parameter would precisely cut the highly
dimensional phase space exactly along the dividing surface. However, path sampling
corrects for the recrossings automatically|[3,24].

The TIS algorithm provides an improvement in efficiency over the reversible in-
tegration scheme. Here the integration process is done by dividing the phase space
using so-called interfaces and sampling the path ensembles for each interface. TIS
defines a monotonically increasing set of interfaces {\g, A1, ...\, } determined by an
order parameter \. The stable states A and B are bounded by the interfaces A4 = g
and \gp = \,, respectively. Thus state A is defined as the set of configurations x for
which A(z) < A4, where the function A(x) maps = on the order parameter. For each
interface TIS samples the paths that leave state A and cross the interface and return
to a stable state, either A or B. The rate from a state A to B is expressed as

kap = (pa1)Pa(AB| 1) (1)

2 Note a common density plot, which plots the population of configurations, will often
be overwhelmed by the stables states. In contrast, a path density plot counts paths only
once for every ’bin’ in the projection, which can highlight the barrier crossings. See for more
information Ref. [26,27,62]
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where ¢ 47 is the effective positive flux of crossing the first interface for trajectories
leaving state A [13]. Pa(Ap|Aa) is the crossing probability, the probability that a
trajectory that leaves state A makes it all the way to state B. This probability is
usually very low, and needs to be constructed from concatenating crossing probabil-
ity histograms for each interface ensemble. This procedure also links the unbound
path ensemble to the constrained one, and is hence equivalent to doing the TPS in-
tegration. An additional advantage in efficiency comes from the fact that the paths
can be shortened to the absolute minimum, because a path can be halted if it enters
a stable state. Particularly efficient is a combination of TIS with replica exchange
methodology, which provides much better decorrelation of paths (see section 3.7).
Furthermore, TIS is not very sensitive to the choice of the order parameter \ used to
describe the interfaces[15]. While a variation in the order parameter might influence
the efficiency of the calculation, it will not change the final outcome.

2.3 Access to the entire path space by reweighting

The path ensemble set resulting from TIS can be reweighted yielding the reweighted
path ensemble (RPE)[28]. Attached to each path in this ensemble is the probability of
observing it in a infinitely long MD trajectory. By reweighting each path observed in
the TIS, one has thus access to an infinitely long trajectory (see Section 4 for a detailed
discussion). Therefore all kinetic and thermodynamic projections immediately follow
from the reweighted path ensemble. Besides rates and free energy, of special interest
is the committor function. The committor for the final state B, pp(x), assigns to each
configuration x a probability to reach the final state B rather than the initial state A
when starting from that configuration with random velocities. The reweighted path
ensemble allows projected committors in arbitrary collective variable spaces. This is
useful for the reaction coordinate analysis.

2.4 Mechanistic insight through reaction coordinate analysis (committor
analysis)

One of the main attractions of the TPS method is its ability to give unbiased mecha-
nistic insights into the reaction mechanism. By direct inspection and statistical anal-
ysis of the pathways harvested with TPS, one can obtain information on the variables
governing the course of the reaction. In this context, the committor has proven to be a
particularly useful concept. Ideally such a analysis yields a reaction coordinate, a col-
lective variable measuring the progress of the reaction. In Sec. 5 we will sketch several
methods for the analysis of pathways and discuss issues arising in their application.
Reaction coordinate analysis has been applied to several complex processes, for in-
stance, ion pair dissociation [56], crystal nucleation [58] and protein conformational
changes [26,27].

3 lIssues and potential pitfalls in path sampling
3.1 Stable states need to be carefully defined: core sets
While the path sampling methodology does not require an order parameter that
mimics the reaction coordinate, there still is a collective variable problem in the form

of the stable state definitions (and the interface definition, for TIS). Fortunately,
defining a stable state is in principle much easier than defining the mechanism of a
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complex rare event without a priori knowledge. Using a regular simulating setup the
stables states themselves are easily sampled, as in metastable states MD trajectories
have a tendency to return to the same state. Analyzing these trajectories allows
definition of the stable state regions, in the form a characteristic function hs(z) =1
if x € A, 0 if 2 ¢ A. Usually this characteristic function is defined using order
parameters, e.g., ha(z) = 1 if Ay min < A(Z) < Aa,mae- However, there are a few
pitfalls that need to be avoided in such a definition of the states. The most important
one is the possibility that paths are identified incorrectly as transition paths. This
means that a path, identified as connecting A and B, recrosses the barrier and becomes
an AA (or BB) path when extended in the forward (or backward) time direction. This
false identification is caused by an incorrect or too loose definition of the characteristic
functions for the stable state. As an example, suppose that in stable state A the value
of the order parameter fluctuates between 0 and 0.4 and in stable state B it is between
0.6 and 1. However, because of recrossings, it is possible that a path coming from A
reaches e.g. a value of 0.6 but has, in fact, still not made the transition. Such a path
has not yet reached the so-called basin of attraction of B and will return quickly to
A. When the states are identified by the fluctuations of the order parameters, as one
would naively think would be appropriate, the TPS will allow such spurious paths,
and get stuck, because once a paths lies entirely in the basin of attraction of a single
state it is unlikely to escape this basin again. To avoid this problem, the stable state
definitions, i.e. the characteristic functions, should be much stricter than one would
naively expect. For instance, in the example, one could choose a definition of intervals
[0,0.05] and [0.95,1] for A an B respectively. This sounds strange, because surely, these
intervals are at the wings of the distribution of the order parameter. However, the
point is that once the path is in a stable basin it quickly can explore the basins,
and visit these values, on a timescale much smaller than the reaction time, while
the chance to find this value in the other stable state is minimal. Hence, a possible
criterion for defining the states could be the ratio of the population p inside the two
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Fig. 1. Left: Cartoon of possible energy landscape with two minima, with a very strict
definition in the z-axis. Top right: Equilibrium probability pa(z) (blue) and pgp(x) (red)
along the z-axis. Bottom right: relative logarithmic probability of pa with respect to pp.
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basins of attractions as a function of the order parameter,

log,q pA()‘A,mam)/pB(/\A,mam) > 10. (2)

Here, p4(A) is proportional to the number of configurations x for which the committor
pa(r) > 0.5 and A(x) = A. So the criterion states that only one out of every 101°
configurations at the edge of the stable state definition of A (as characterized by
Ad.maz) in fact belongs to B. If the order parameter is well chosen and the barrier
is high enough, this is not difficult to realize (See Fig. 1 for an illustration). Of
course, there is a chance that choosing only one order parameter is not sufficient to
achieve this. However, a combination of order parameters can be used to make the
state definition stricter. Such a combined characteristic function can be made by a
(non)linear combination of order parameters A(x) = f(q1(x), g2(x)...), or a logical
combination ha(z) =1 if ¢1(z) < ¢1,maz N ¢2(%) < ¢2,maz-

We note that this way of defining states is related to the so-called core sets used
in the MSM community|[29].

3.2 Optimizing TIS simulations

As noted earlier, TIS is not as sensitive to the definition of interfaces between the
stable states as other interface-based methods. The reason is that in TIS pathways
are relaxed also in backward direction such that the pathways are not forced to
start into the wrong configuration-space direction by unsuitably defined interfaces.
The efficiency of a TIS calculation, however, can be improved considerably by a
smart placement of the interfaces. In this section, we briefly discuss an adaptive
procedure [30] designed to improve the interface definition and enhance the efficiency
of the simulation. The basic idea of the method, based on an earlier optimization-
procedure developed for FFS [31], is to place the interfaces in a way to minimize
the statistical error of the calculated rate for a given total simulation time. As the
accuracy of a TIS rate-calculation depends mainly on the accuracy of the probability
to reach final state B once the boundary of the initial state A has been crossed, the
optimization procedure concentrates on reducing the variance in the estimation of
this crossing probability. As can be shown by considering the statistical properties of
repeated shooting moves, the accuracy of the crossing probability is best for equal
flux through all interfaces. To satisfy this constant flux condition, one repositions
the interfaces using an interpolation formula obtained from a short TIS-simulation
with unoptimised interfaces. This procedure places interfaces with higher density in
the bottleneck regions of configuration space such that the overall numerical effort is
concentrated on pathways passing through these region. Alternatively, one can also
vary the number of paths sampled at each interface for fixed interface positions. Thus,
in this approach one redistributes the computational effort on the interfaces without
changing their position. In both cases the optimization can be carried out based
on short preliminary calculations without creating a large computational overhead.
TIS-calculations carried out for a simple two-dimensional model and for the dipole
reorientation of ice structures inside carbon nanotubes indicate that this optimization
procedure increases the efficiency of TIS-simulations of up to an order of magnitude
[30] with respect to a simple uniform placement of interfaces.

3.3 TPS and TIS are less easy to implement than other path-based methods

One of the strengths of transition path sampling is the use of the backward time
integration in the shooting move[9,24], which allows paths to relax and equilibrate to
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correct unbiased path ensemble, and does make TIS less sensitive to the choice of the
order parameter. However, the backward time integration step of the shooting move
is not as easy to implement as the forward integration. It requires careful bookkeeping
of the momenta at the shooting point (and also the rest of the trajectory). There-
fore many path-based rare event studies have opted to use a forward shooting only
method, such as the forward flux sampling (FFS) algorithm[17], which is conceptu-
ally simpler in spirit than TPS and TIS but only applies to systems with stochastic
dynamics (whereas TPS/TIS can handle any microscopically reversible dynamics).
While originally developed for non-equilibrium dynamics, because it does not require
microscopic reversibility, the FFS scheme is also often used for studying equilibrium
kinetics[18]. The basic FFS algorithm collects from a long dynamical trajectory, con-
figurations that reach the first interface. From these points new stochastic trajectories
are initiated and stopped when the paths reach either the next interface or return to
the initial state (or are deemed to return). Points that reach the next interface are
collected and the procedure is repeated, until paths from A to B are realized. The
kinetic rate constant then follows from Eq 1. This procedure is indeed simpler than
the TIS algorithm, and can be parallelized trivially, but also suffers from a (possibly
strong) dependence of the initial stages of the FFS sampling. If (at least some of) the
paths in the first stages of sampling are not representative of the entire transition, the
final path ensemble will not be representative, and kinetic properties will be correct.
We refer to a review by van Erp for a thorough analysis of this issue[15]. The usual
remedy is to sample a very large number of points at each stage, so that this depen-
dence will become minimal. But then of course the method becomes less efficient. In
TIS, at each interface, the backward shooting allows relaxation of the pathways, and
hence a better estimate of the kinetic mechanism and the related rate constants. As
TIS requires not much more computational effort than FFS we recommend the use of
TIS for studying equilibrium kinetics. Of course, when dealing with non-equilibrium
dynamics one has no choice than to use only forward integration (e.g. FFS, NEUS),
as the requirement for microscopic reversibility is no longer valid[17,18].

3.4 Path sampling is computationally expensive.

The TPS/TIS method is computationally expensive, more so than e.g. a biased
method, such as meta-dynamics[32], but clearly not as much as straightforward MD,
if the involved barrier is sufficiently high. As a rule of thumb, TPS should be more
than two orders of magnitude more efficient than straightforward MD to be worth-
while. This will be already fulfilled for moderate barriers (e.g. of 5kgT). If one is
a priori very certain about the collective variable that describes the mechanism of
the transition, e.g. a gas phase chemical reaction with a single atomic distance, the
use of TPS is limited and one is better off doing enhanced configurational sampling,
possibly in combination with the reactive flux approach. However, when the reaction
coordinate describing the transition is far from clear, or very complex and convoluted,
the TPS method might be useful to get insight in this reaction coordinate. A reaction
coordinate analysis then leads to a improved description, which might immediately
allow a reaction coordinate driven configurational sampling, or could be used in a
TIS scheme to compute the rate constants.

3.5 How to track convergence using one way shooting

For a complex rough energy landscape, molecular dynamics trajectories connecting A
with B over a high barrier can be long and tortuous. In that case, even for determin-
istic MD, the dynamics can be almost be viewed as stochastic, because the paths are
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Fig. 2. Examples of sampling trees. Horizontal lines denote the trajectory from time slice 0,
to the final slice L from left to right. Blue indicates the initial path. Green is a backward shot,
red denotes a forward shot. Vertical lines denote the shooting point location. a) a reasonable
tree, which after 20 accepted paths has completely changed the trajectories several times.
b) an example of a incomplete sampling. The middle part of the trajectory has not changed
at all. (Trees provided by Eva van Mastbergen.)

much longer than the Lyapunov time, which denotes the onset of molecular chaos[33,
24]. The randomly chosen shooting point on the trajectories is more often than not
away from the dividing surface or the transition state. A path that is started from the
shooting point will therefore likely be attracted to the same basin of the state it is
in, and so does its backward shot. In that case, two-way shooting will fail more often
than one-way shooting. To see this, consider that the chance that a two-way shot is
accepted is roughly pa(z)pp(z), where p(x) is the committor of the configuration z,
in this case the shooting point. The chance that a one-way (backward) shot is ac-
cepted is pa. Hence, a two-way shot is accepted much less frequently than a one-way
shot, certainly for points with high p4 (low pg = 1 — pa). This could be the situa-
tion for 90% of the trajectory. For such situations, the one-way shooting turns out to
be more efficient[33]. However, one-way shooting does not produce a completely new
path every shot, but only (roughly) half of it. The other half remains identical to the
previous path. Therefore, the paths must decorrelate during the sampling. To check
for decorrelation, it is convenient to draw a “shooting tree”, that clearly shows when
paths decorrelate: when a forward shot is accepted from a shooting point that was
previously on a backward shot part of the path, or vice verse when a backward shot
is accepted shot from a forward path. The alternation between forward and backward
is thus crucial for the path sampling. A shooting tree will quickly show this. Figure 2
shows a clear example. Still, even when a tree looks correct, the path ensemble needs
to be checked for sufficient decorrelation, e.g. using a correlation function[24] An al-
ternative way to avoid low acceptance with two-way shooting of long paths, is to use
precision shooting[34]. Here, the momenta at at the shooting point are modified so
minimally, that the path retraces the old path to a substantial fraction of the trajec-
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tory length. Of course, here also special attention needs to given to path decorrelation
during the sampling.

3.6 Path sampling can get trapped in intermediate meta-stable states

Path sampling was originally developed for a system in which two states are sepa-
rated by a single (rough) barrier. However, nothing stops systems from exhibiting
intermediate states between A and B. In fact, for sufficiently complex transitions, it
is almost impossible to avoid such intermediates. A transition path sampling simu-
lation, conducted for such a process from A to B, will almost certainly visit these
intermediate states. When the lifetime of an intermediate state is small, and on the
same order as the duration of the direct molecular transition time from A to B this
is not a problem. The average path length will become longer because of these traps,
but not detrimentally so. However, problems arise when the intermediates cause the
path to stay inside those states for timescales much longer than the transition time.
The path length will grow exponentially, and computer power will be mostly wasted
on just exploring the intermediate states, quickly rendering the sampling very inef-
ficient. In case the number of intermediates is small, the simplest remedy, and often
also the most effective, is to split the transition into multiple segments and treat
each transition independently. This means that each intermediate is treated as a sta-
ble state, and defined in this way. Path sampling is then initiated in the usual way,
and has to be repeated for each combination of states. For N states this boils down
to %N (N — 1) independent transitions. This square dependence can be daunting,
especially when NV is running in the tens of states. Moreover, as TPS focuses on tra-
jectories between specific pairs of states only, a small detour into any another state
has to be rejected, making the sampling even more inefficient. A viable alternative to
sampling all possible transitions independently is to make use of the multiple state
TPS/TIS ensemble[35]. In this ensemble, all transition paths from all states to all
states are allowed. In particular when all states are of similar stability, and barrier
heights are not too different, this is an attractive approach. To obtain all the kinetic

Fig. 3. Multiple state path sampling. The blue paths belong to all interface ensembles for
A, including the outermost interface and multistate TPS ensembles. The red path does not
reach the outermost interface and is hence only a valid path in the lower interface TIS
ensembles.
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rate constants, TIS computes for each state the crossing probability towards a prede-
fined outermost interface (see Fig. 3). The final piece of the puzzle is then a multiple
state TIS simulation in which all paths are allowed the connect two states, and cross
the outermost interface of the initial state[35]. This reduces the computational effort
from quadratic to linear scaling with the number of states N.

3.7 Multiple channels are not easily sampled: replica exchange path sampling

One of the major challenges in TPS /TIS is to sample complex processes occurring
via multiple parallel routes or channels. An example could be a molecule passively
transported through a membrane. This can clearly happen at multiple points in the
membrane, that do not have to be identical. Another example is a chemical reaction
that takes place along multiple distinct mechanisms. Finally, protein conformational
changes often occur via a complex network. For such systems one would like to sam-
ple all possible parallel pathways with TPS or TIS. Since TPS is a Monte Carlo
procedure, in principle, it should be able to sample all important regions. However,
there might be high (free) energies barriers between channels that prevent it from
doing so. This situation is similar to a regular Metropolis Monte Carlo simulation of
a molecular system: e.g. a super-cooled liquid might take a long time to nucleate into
a crystal. One way to overcome such barriers is to invoke a replica exchange approach
[36], where multiple replicas sampled at different conditions are allowed to exchange
in an extended ensemble. The mostly used ’'vanilla’ type replica variable is the tem-
perature. While sampling pathways at the temperature of interest might suffer from
large barriers between the distinct channels, at high temperature these barriers are
easily overcome, and all channels can be sampled. Coupling the replicas then allows
the replicas to flow from low to high temperatures and back again, and also correctly
sample all possible channels at the temperature of interest [36].

For TIS there is also another possibility, namely the exchange between interface
ensembles[20,21]. Neighboring interface ensembles can often exchange because there
is a reasonable change that a path crossing interface i also crosses interface i+ 1. The
exchange then allows paths to move between interfaces, from a transition path all the
way to the first interface, and back again to the outermost (last) interface where the
transition to B is very likely. When multiple channels exist, a pathways that starts in
one channel, is able to first retract to the first interface and then extend again over
the barrier toward the final state via a different channel. Decorrelation of pathways
is furthermore hugely improved by the so-called minus move, in which a path in the
first interface is exchanged with a new path coming from a straightforward run in
the stable state. Decorrelation is further enhanced when paths from different initial
states are exchanged, allowing a more efficient exploration of the path space.

An alternative way to overcome barriers in trajectory space consists in combining
transition path sampling with the Wang-Landau flat histogram algorithm [37,38]. In
this approach, the simulation is biased such that all values of a given variable (for
instance, the energy) are sampled with uniform frequency within a certain range. The
bias, which is adjusted on the fly, drives the simulation into regions that have not
been visited before. Flat histogram calculations carried out in path space, with a bias
applied to the energy or to the volume, have been shown to enhance the ergodicity
of path sampling simulations considerably even if the transition occurs via several
distinct pathways [37]. As a by-product, such simulations yield activation energies
and activation volumes, which can be used to compute reaction rate constants based
on thermodynamic integration starting from a reference state with known reaction

rate [39)].
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3.8 RETIS is even more computationally expensive: Single Replica TIS

The application of replica exchange TIS (RETIS), which swaps interfaces among the
replicas, solves major convergence problems in the path sampling framework and can
be easily extended to the multiple state approach [40]. While solving convergence
problems, RETIS has two major drawbacks: 1) it is computationally very expensive,
because for a multiple state RETIS simulation one needs at least one set of inter-
faces per state, leading to a number of interfaces running in the hundreds[40]. 2) the
method is not easily parallelized because paths in each interface ensemble likely have
a different instantaneous path length, and hence each trajectory requires different run
times to create. Of course one could design a clever asynchronous exchange scheme
or use fancy job schedulers, but the fact remains that the effort to run such a scheme
is very large to start with. Since computational effort is a major bottleneck in the
study of any complex systems, it is worthwhile to try to reduce it. One option is to
turn the replica exchange scheme into a single replica version similar to simulated
tempering[41,42]. In this approach only one replica is being sampled at the time, and
this replica moves through interface space by exchange moves[42]. The downside of
the technique is that one needs to know the correct weights of the pathways at each
interface a priori to achieve proper sampling. This is identical to the case of umbrella
sampling, where one basically needs a good estimate for the free energy as a function
of the order parameter. The single replica TIS approach does exactly this, by moving
trough interface space using a biasing function, which turns out to be identical to
the crossing probability. The crossing probability hence plays an analogous role to
the free energy in umbrella sampling. This biasing function can be build up by a
Wang-Landau algorithm which should slowly converge to the correct answer, or by
an educatedly guessed fixed bias function, which can then be iteratively improved[42].

3.9 Can path sampling be merged with Markov state modeling?

For very complex systems such as protein folding or binding, even the task of defin-
ing stable state is not straightforward anymore. This is caused by the presence of a
myriad of meta-stable states in such systems, each with its own intrinsic timescale.
One of the most successful approaches of the last decade is the application of Markov
state models to make sense of these complex systems[43,29]. In this approach one
conducts many long MD simulations and analyzes these on the basis of a geometri-
cal or kinetic criteria. That allows grouping of configurations into meta-stable sets.
From the MD simulations one can then extract kinetics as well as thermodynamics
by constructing kinetic transition matrices, and essentially solving the master equa-
tion numerically. While extremely successful, there seem to be two issues in MSM
that would potentially be problematic: 1) there might be high barriers, related to
rare but important events for the mechanism and kinetics which are not sampled in
the relatively short MD trajectories. 2) It seems that one is doing too much work,
because the overwhelming majority of the MD trajectories will sample metastable
states but not the more relevant transition region. In this sense MSM should be seen
as an analysis method rather than a sampling method. One approach is that of the
adaptive seeding approach, in which new MD trajectories are restarted at places that
were not encountered before [44]. However, it appears that some of the difficulties
arising within the MSM approach can also be addressed by path sampling. Pande
and coworkers pioneered these lines of thinking more then a decade ago[45], by using
path sampling to improve MSMs. The recently developed single replica transition
interface sampling (SRTIS) can provide a systematical approach. SRTIS is able to
start with a single state, and when a new, previously unknown state is encountered,
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signalled by a trapped pathway, this new trapping state can be analyzed and added
to the allowed states. By adding states one by one to the database of states, and
disfavoring paths that have been sampled over and over again, SRTIS is able to take
the best of both worlds, and sample rare pathways while building up the MSM. This
was effectively the approach that was taken in Ref. [46].

There are some important differences in the MSM and SRTIS approaches. While
a typical MSM analysis can result in 10,000’s of states, this will not be possible for
SRTIS. In SRTIS the number of states should be of the order of ten, but not much
more, to keep the problem tractable. However, of the 10,000 MSM states not all are
stable on the order of a microsecond. On the contrary, most states are stable on the
order of a nanosecond or less. This means that the MSM states are in fact not (yet)
core sets in the sense of TPS stable states. However, it is perfectly possible to identify
the core sets in the MSM, that are stable on timescales of tens of nanoseconds and
more, and use those in the description of the stable states for path sampling. This
approach is currently under investigation.

4 Data analysis of the path ensembles
4.1 Reweighting schemes

Once sampled sufficiently, the TPS and TIS path ensemble data needs to be post-
processed in order to yield the rates, free energy, and the committor function for the
reaction coordinate analysis. In the case of TIS, the path ensemble of the different
interfaces need to be related to each other in a meaningful way. If one is just interested
in a rough estimate of the kinetic rate constant, as defined in Eq. 1, computation of
Pa(Ar41]|A:) as the fraction of trajectories in the path ensemble for interface ¢ that
make it to the next interface i+ 1 is sufficient[13]. However, the analysis can be made
more rigorous using reweighting schemes such as the weighted histogram analysis
method (WHAM) to compute the crossing probability P4(Ap|A1), and hence the rate.
Moreover, it turns out that the entire path ensemble can be reweighted, and projected
in any desired way[28]. Since this reweighting scheme has not been reviewed before,
we decided to give it a bit more attention here, as it might be of help to researchers
that would like to reweight their path ensembles.

4.2 Reweighting the crossing probabilities

Provided the TIS ensembles contain a statistically sufficient number of decorrelated
paths, the crossing probability P4(A|A;) can be estimated by a histogram H J’ con-
structed for each TIS A; ensemble. In practice the histogram is just a sum over the
N; sampled pathways for interface i

1

ﬁi O(Amaz [x(n)] - Aj)v (3)

Pa(\j|\) =~ H;i =

:M?

where every path x is a sequence of configurations x = {xg,21,...25}, the Apax
function returns the maximum value of A along this path3, and the 6 function returns
only unity for a non-negative argument, and zero otherwise. Note that index j refers
to the histogram bins, with a specific A\; value, whereas i refers to the interface index.
In case j and ¢ have the same resolution, i.e. the histogram has one bin per interface,

3 This requires a monotonically increasing series of interfaces.
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Fig. 4. Illustration of reweighting the crossing probability histograms. Left: a cartoon of
the path ensembles for three interfaces. Middle: constructed normalized histograms. Right:
reweighted histograms using WHAM.

the histogram H Jj is identical to the path type number (see section 4.5). Note also that

H jj = 0 for \; < A;, by definition. To avoid numerical issues, the histograms should
be cut off, e.g. at 5% of the maximum value. The total crossing probability histogram
can be constructed by e.g. the weighted histogram analysis method (WHAM), which
computes the reweighted crossing probability histograms as

E(Az)
Pa(Nj|\) = @i,y Z H;, (4)
=1

where k() = 2?21 O(A—A;) selects the correct window for the value of A considered.

The optimal WHAM weight is w; = (ZZ 1 Za/Z4;)"t, where estimates for the path
ensemble partition sums Z4 ; follow from solving the recursive relation

bins i k
—o H;
R e s ®)
Zk sgn(HJ)My/Za

where the sign function ensures that only positive entries of the histograms are taken
into account and My = 3 j H Jk is the total amount of entries in the histogram k,
This equation can be solved iteratively. In the iteration the partition function of the
first interface is always set to Z4 = Z4,; = 1. Figure 4 shows an illustration of this
process. An almost identical reweighting can be done using the Multistate Bennett
Acceptance Ratio (MBAR) method[47].

4.3 Reweighting the paths themselves

As each TIS interface ensemble is a constrained subset of the total path ensemble, the
reweighted path ensemble can construct the unbiased total path ensemble from the
individual TIS ensembles, by associating each path with a probability or weight w;;‘
depending on the kth interface window defined by Ay < A < Ag41. The weights turn
out to be identical to the WHAM weights wj for the crossing probability histogram,
but now with k& = Y1 | 6(Anaz[X] — Ai) the interface number that is maximally
crossed.

A similar reweighting procedure can be done for state B (or any other state).
The ensembles of each state should be multiplied by a factor adjusted such that the
AB pathways are equally likely as BA paths. To complete the total path ensemble
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one can add the paths from the stable state, e.g. from a minus interface sampling or
from the stable state MD sampling.[20,28] We note that the path reweighting can
in principle also be performed with the dynamical reweighting scheme of Minh and
Chodera[48].

4.4 Projections of the reweighted path ensemble

Assigning the relevant weight to all paths, the reweighted path ensemble can be used
to project out e.g. the free energy or committor[28,25]. For instance the probability
density p(q) as a function of collective variable space q = {¢1, g2....qn } is given by

N, L
pla)=C S W™ S s(q(z”) - q), (6)
n =0

where W[x] is the correct weight for path x (e.g. wi! or w?) depending on where
the path came from and how far it has traveled, N, denotes all sampled paths in all
interface ensembles, and C' is a normalizing constant. The projected free energy up
to a constant follows from

F(q) = —kpT1np(q) + const, (7)

where kp is Boltzmann’s constant.
The (projected) committor is given by

_ S W) Y dal™) )
SN W™ Y da(z™) — a)

where hp(x) =1 if € B and zero otherwise.

, (8)

ps(q)

4.5 Path type reweighting

When applying multiple state TIS it is possible that intermediate states are overlap-
ping with or even falling inside the outermost interface. Computing the crossing prob-
ability for that outermost interface and constructing the rate matrix might then lead
to incorrect results. A possible remedy to this problem is to use path type reweight-
ing[46]. For interface ensemble i the path type number n};(Ag) is defined as the
number of paths that start in state I, end in state J, and maximally reach interface
Ak1- Just as the crossing probability, the path type number can be reweighted to give
the reweighted path type number 77y (Agr)

nry(Akr) = Wy Z 'y (Akr), 9)

i=1
with the weights W) determined from the WHAM procedure for the crossings proba-
bility (see Ref. [28]) The crossing probability Pr(Ags|A1r) for reaching state J (defined
by Mos) from state I is now
> opeq rs(Mer)

ZJGM E;cnzl firg (Akr)
Thus, the rate constant matrix is given by

kry = (¢11)Pr(Mos| 1), (11)

where (¢17) is the positive effective flux through the first interface A;;, which follows
from a direct simulations or from the minus interfaces move[20].

Pr(Xos|Air) =

(10)
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5 Strategies for reaction coordinate analysis
5.1 The reaction coordinate and the committor

One of the central challenges in the computer simulation of complex systems is how to
make sense of the vast amounts of data produced in such simulations and transform
them into true understanding. For instance, molecular dynamics simulations produce
long lists of numbers detailing the positions and velocities of all atoms in the system
as a function of time. Now, which of these degrees of freedom need to be considered
when building simplified models that capture the essence of the underlying molecu-
lar mechanisms and which can be replaced by random noise? In some cases, visual
inspection of the atomistic trajectories might offer some clues on what is happening,
but in many cases the relevant variables are collective and, as such, are difficult to
identify based on watching a molecular movie. To overcome this problem, several
machine learning algorithms have been developed recently to assist in the construc-
tion of low-dimensional models in order to rationalize the simulation results [49-51].
The issue of identifying important degrees of freedom is particularly relevant for rare
event processes such as the nucleation of first order phase transitions or chemical
reactions in solution, where knowledge of a valid reaction coordinate is crucial for
understanding the reaction mechanism. However, this immediately begs the question,
what actually is a reaction coordinate? Naturally a reaction coordinate should be a
progress variable that describes the reaction. However, in our view the precise defini-
tion of such concept depends one the objective that one has in mind. In the following
we will briefly discuss several possibilities.

1. The reaction coordinate is the committor function itself. It has been observed
in the literature [52,53] that the committor function (also known as the splitting
probability or pfold) is the perfect reaction coordinate as it predicts for a certain
configuration the exact probability that one will reach the product state. In other
words, the committor tells us how far the process has proceeded and what is likely
to happen next. Moreover, the committor function (along with the equilibrium
probability) permits to express all statistical properties of the reactive trajectories.
While this seems a perfectly reasonable viewpoint, there are some comments to
make. First, the statement is strictly true only in the case of stochastic dynamics.
For deterministic dynamics a phase point has a binary value for the committor,
either the trajectory goes to the product or it does not. Of course, an integration
over the momenta restores the notion of the committor, but then it is not clear
what the role of ballistic motion and velocity correlation is in this description.
Second, and more importantly, even if the committor is a perfect description
of the reaction coordinate, unfortunately it conveys not much information, and
certainly not much physical insight. This is because the committor function, being
a function, just yields a number. The real information in fact results from solving
z in pp(x) = const. Since z contains the entire system, this is a high dimensional
(3N — 1) space itself, and not trivial (if not impossible) to analyze.

2. The next best approximation is an optimal low dimensional model of the
committor. Indeed this seems a very good option, as such a model would give
direct insight in mechanistic detail in terms of meaningful collective variables.
This interpretation is thus much better than that in 1), as it gives the collective
variables that are pertinent to the reaction, rather than a full high dimensional
phase space. This approach allows to cast a mechanism in terms of an ordered
sequence of events that occurs during the reaction.

3. When we are not really interested in what the reactive paths might do away from
the dividing surface, the reaction coordinate could be approximated by a low
dimensional model of the dividing surface (separatrix). This is usually
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the approach taken by variational T'ST [54] and gives insight in the transition
state ensemble and direction of reactive flux. This type of reaction coordinate is
also the aim of the likelihood maximization method of Peters and Trout[55], which
uses the shooting point ensemble obtained with aimless shooting.

4. In many cases one is not interested in an accurate and precise reaction coordinate.
A reasonably good low dimensional model of the transition already allows
evaluation of the free energy along this reaction coordinate, rates, transmission
coefficients. This definition does not really constitute a true reaction coordinate
and is usually denoted order parameter or collective variable.

5. The coarsest description of a reaction coordinate is to find reasonable order
parameters or collective variables that distinguish reactants from prod-
ucts. This allows a description in terms of (meta)stable states, and in e.g. allows
performing TPS, but cannot be used to identify a transition state ensemble.

In our view the ultimate goal would be to analyze and model the committor function
to obtain the reaction coordinate interpretation 2) in the above list, but we realize
that in many case we should be happy already with achieving interpretation 3). In
practice, the reaction coordinate as in 2) is available form a full analysis of the entire
reweighted path ensemble[28,57], while reaction coordinate definition 3) would be the
result from analysis of a shooting point ensemble obtained with aimless shooting.

5.2 Committor analysis

While the committor carries the dynamical information required to characterize the
transition, it is in general unclear how the committor can be expressed in terms of
physically more transparent collective variables that permit to construct meaningful
low-dimensional models from the wealth of information produced by molecular sim-
ulations. Nevertheless, the concept of the committor is the basis for several methods
that have been suggested for the identification of the collective variables contributing
to the reaction coordinate. Since the early days after the development of TPS it was
already realized that the committor held the key for identifying whether a collective
variable chosen to model the reaction coordinate was actually capable of describing
the reaction correctly. Geissler et al introduced the so-called committor test or analy-
sis [56]. To test whether the collective variable could act as a reaction coordinate, one
only had to perform a simulation in which the sampling was constrained to the top of
the barrier as predicted by that collective variable. Subsequently, committors could
be computed for the configurations from this constrained ensemble. If these commit-
tors would have values around 0.5 the reaction coordinate would be well described
by the candidate collective variable, but if the committor would instead have values
very different from 0.5, e.g. only 0 or 1, the collective variable would be not be a good
reaction coordinate. Of course, intermediate outcomes, such as a flat distribution of
committor values, would also be possible.

The disadvantage of the above method was that for every candidate reaction
coordinate this procedure had to be repeated. Therefore several groups developed
analysis methods that only used the TPS data itself. The most developed one is the
method of Peters and Trout [55], in which the parameters of a postulated model are
adapted to maximize the likelihood to observe a particular sequence of accepted and
rejected path sampling moves. This method has been generalized to include a non-
linear dependence of the committor on the collective variables [55,57-59] and has
also been applied to optimize the definition of crystallinity in simulations of crystal
nucleation [60]. In an alternative perspective, neural networks are used to search
for combinations of physical variables that best approximate the committor [61].
All these methods, however, require the definition of a list of potential candidates
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for important collective variables and, thus, rely on guesswork that is ineffective
particularly for complex, heterogeneous systems. Since due to the rapid growth in
raw computing power coupled with the advent of efficient sampling algorithms the
amount of data generated by molecular simulations is quickly increasing, further
progress in the development of machine learning approaches for the analysis of rare
event simulations is sorely needed.

6 Concluding remarks

In this paper we have discussed several practical and conceptual issues in path sam-
pling methodology: the problems that can arise with sampling the trajectories them-
selves, the reweighting of the path ensembles, and the strategies for reaction coordi-
nate analysis. Naturally, we had to leave out many technical points, and moreover
we realize that path sampling is not the magic solution to all rare event problems.
There are also many other path based rare event techniques, which we did not men-
tion. Nevertheless, we think that pointing out these problems and solutions will help
researchers that are applying path sampling methodology to their own systems.

The path sampling framework continues to be developed, and even after 15 years
there are still open issues. At the end of this paper we list a few of these. For in-
stance, it would be convenient to have a better way to establish (de)correlation be-
tween paths. At this moment, we rely, besides the tree representations discussed in
section 3 mostly on (time) correlation functions between collective variables along
the paths. However, this is rather ad hoc, and does vary with a time shift. A more
systematic approach for the quantification and control of correlation in path ensem-
bles would be useful. Another possible development that was discussed in this paper
would be the combination of path sampling with Markov state modeling. This would
allow for systematic and automatic stable state recognition, and would be useful for
very complex (bio)systems. Furthermore, better or automatic ways to optimize the
path sampling would improve efficiency. This would include optimizing the used TIS
order parameters as well as their placement. As pointed out in section 5 a machine
learning algorithm to come up with good reaction coordinates based on committor
or other path sampling data is going to be extremely helpful in understanding com-
plex processes. Another area that could use improvement is the visualization of path
ensembles. Of course trajectories can be plotted, and movies can be shown, but how
to visualize an ensemble of trajectories of a complex process in space-time is not
straightforward. Finally, it would be extremely useful for the community to have a
path sampling software package that does all (or at least some) of the above.
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