
Nonzero Ideal Gas Contribution to the Surface Tension of Water
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∥MTA-BME Research Group of Technical Analytical Chemistry, Szt. Gelleŕt teŕ 4, H-1111 Budapest, Hungary
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ABSTRACT: Surface tension, the tendency of fluid interfaces to behave elastically and
minimize their surface, is routinely calculated as the difference between the lateral and
normal components of the pressure or, invoking isotropy in momentum space, of the virial
tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid−
vapor interface can be responsible for a large part of its surface tension (about 15% for
water, independent from temperature).

The surface tension of a fluid can be obtained in several
ways from the microscopic variables describing the

system: the so-called mechanical route links the surface tension
of a planar interface to the imbalance between the normal (pN)
and lateral (pT) components of the pressure tensor, γp = ∫ −∞

∞ pN
− pT(z) dz. In a periodic system of size L, one can use the
volume average of the pressure tensor to write the surface
tension as γp = L(pN − pT)/2, where the factor 1/2 takes into
account the presence of two interfaces. For a system of
pointlike particles, the pressure tensor p can be accessed
through the virial route,1,2 p = 2(K − Ξ)/V, where V is the
system volume; K = 1/2∑i mi vi ⊗ vi is the kinetic energy
tensor (corresponding to the ideal gas contribution); and Ξ is
the virial tensor, which, for pairwise-additive forces fij between
particle i and j, can be written as Ξ = −1/2∑i>j rij ⊗ fij. If no
constraints are present in the system, it is possible to invoke the
equipartition theorem,3 ⟨x∂H/∂x⟩ = kBT (H being the
Hamiltonian, kB Boltzmann’s constant, and T the absolute
temperature), for the elements of the kinetic energy tensor and
write the (average) pressure tensor as p = ρkBT1 − 2Ξ/V,
where ρ is the number density of atoms and 1 is the unit tensor.
This allows us to write an alternative expression for the surface
tension, γΞ = −L/V(ΞN − ΞT), which is, on average, completely
equivalent to the one involving the full pressure tensor, γp, but
has the advantage of not requiring the sampling of velocities.
The equivalence γp = γΞ, in other words, means that only the
virial part of the pressure contributes to the surface tension,
whereas the ideal gas contribution is zero. This equivalence,
one should stress, is true only in the absence of constraints.

In water, however, the softest internal degree of freedom, the
bending mode, has a frequency of about 1640 cm−1. This
corresponds, at room temperature, to an activation energy for
the first excited state of roughly 7.8kBT and a corresponding
average energy of about 3 × 10−3 kBT. Excited stretching modes
have even higher energies, and in this sense water molecules
are, for the sake of computing the surface tension, just rigid
bodies. In this case, the partition function is not separable any
more into a kinetic and a configurational part,4−7 and the
corresponding constraints acting on Cartesian coordinates and
velocities appear in the expression for the pressure tensor, as is
well-known for liquid crystals.8 Small molecular liquids, on the
contrary, do not usually enjoy long-range order in the bulk, and
the effect of this coupling vanishes because of isotropy. The
presence of an interface, introducing a preferential direction in
the system, can, however, change this picture substantially, so
that in principle the equivalence between γp and γΞ is not
guaranteed any more, and a finite ideal gas contribution to the
surface tension could appear.
In the course of extensive testing for the calculation of the

surface tension of the SPC/E water model,9 we found that the
difference between γp and γΞ amounts to about 15% at ambient
temperature. We were able to reproduce the same discrepancy
with different software packages, integrators (including
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quaternions to describe the rigid body motion), thermostats,
and electrostatic treatments. In particular, we reproduced the
same behavior also in the microcanonical ensemble, guarantee-
ing conservation of the total energy to within at least 1 ppm,
with no evident drift within one nanosecond of simulation. The
asymmetry of the kinetic energy tensor does not show any
dependence on system size or time step, ruling out other
known effects that seemingly violate equipartition.10−14

Although this effect does not depend on the implementation
of the constraints, substituting them with harmonic springs
completely removes the asymmetry and allows the recovery of
the equality γp = γΞ, confirming that it is the rigid arrangement
of atoms in the molecules that is at the origin of this apparent
violation of equipartition.
Because the properties of water molecules at the liquid−

vapor interface differ from the bulk ones only in the first two or
three layers,15,16 it is reasonable to expect the kinetic energy
tensor to be anisotropic only in proximity to the interface. The
kinetic energy tensor is a well-defined local quantity; therefore,
it is possible to calculate, without the ambiguity that
characterizes the configurational part of the pressure,17 its
profile along the surface normal, K(z) = ⟨1/2∑imivi ⊗ viδ(z −
zi)⟩, where it is assumed that the center of mass of the liquid
phase is shifted at the origin of the coordinate system. The
difference between the normal and the lateral components of
K(z) can be used to compute the ideal gas contribution γid(z) =
γp(z) − γΞ(z) to the surface tension, shown in Figure 1, which

is indeed concentrated in proximity to the interfaces. The ideal
gas contribution originates only from the rotational degrees of
freedom of the molecules, as the translational ones (that is, the
molecular centers of mass positions) behave isotropically.
The coupling of the kinetic degrees of freedom to the

positional ones can be exploited to derive an expression for the
ideal gas surface tension profile of rigid molecules, as a function
of molecular orientations. Using the atomic positions ri′ and the
angular velocity vector ω in the molecular comoving frame, the
velocity of each atom in the lab frame can be written as vi = ω
× R(ϕ, θ, ψ)ri′, where R is the Euler rotation matrix
parametrized by the three Euler angles ϕ, θ, and ψ. With the
help of the equipartition theorem, quadratic terms in the
components of ω appearing in the average can be expressed as
functions of the components of the inertia tensor I associated

with the molecular structure. For a symmetric top, correspond-
ing to the case of a linear molecule, such as O2, where I =
diag(I, I, 0), the ideal gas surface tension contribution of the ith
atom is γi

id = −kBTLP2(cos θi)/V, where P2(cos θ) = 3/2
cos2(θ) − 1/2 is the second-order Legendre polynomial and θi
identifies the angle between the molecular axis and the
macroscopic surface normal z.̂ For a flat, asymmetric top like
water, initially laying in the xz plane with the dipole vector
oriented along the z axis, I = diag(Ix, Ix + Iz, Iz), and the ideal
gas contribution of the ith atom located, in the molecular frame,
at (xi′, 0, zi′), takes the form

γ θ δ= +
Lk Tm
VI I I

f P g PI I[ ( ) (cos ) ( ) (cos )]i
i

x y z

id B
2 2

(1)

where f(I) = IxIz(xi′2 − zi′2); g(I) = IxIyxi′2 + miIz
2zi′2; and δ, the

angle between the molecular plane and the surface normal, is
related to the Euler angles through the expression cos(δ) =
cos(ψ) sin(θ). The derivation of eq 1 can be found in the
Supporting Information.
The surface tension profile calculated using eq 1 as γ(z) =

∑i⟨γiδ(z−zi)⟩ reproduces strikingly well the ideal gas rotational
contribution obtained using the kinetic energy tensor, as
reported in Figure 1 with full circles and the solid line,
respectively. The integrals of the two curves differ only by 0.5%.
This shows that, in fact, equipartition is not violated, as it has

been used to derive eq 1, taking into account the correlations
between kinetic and positional degrees of freedom, introduced
by the presence of constraints. The explicit relation between
the ideal gas contribution and the molecular ordering can be
now used to consider from a different perspective some other
results related to the surface tension. More precise structural
information can be gained by identifying the molecules
composing successive molecular layers below the interface18,19

and by calculating their contribution to the ideal surface tension
γid. Such a decomposition, also shown in Figure 1, shows that
the difference between the normal and lateral kinetic
components of the stress tensor is indeed located mainly at
the first molecular layer, with some minor deviations showing
up in the second one, and with the third layer being already
characterized by nearly zero-sum oscillations, which have a
modest contribution to the total value of γid. We already
observed this kind of oscillation in the full surface tension
profile of water,16 but their physical significance was not clear
because of the virial contribution to the pressure profile not
being a well-defined quantity.20 The kinetic part of the profile,
however, does not suffer from these interpretation problems,
and the profile obtained by using eq 1 to compute the
contribution of different layers (Figure 1, open circles) shows
that the oscillations are the result of the correlation between
molecular orientation and deviation from the mean layer
position.
Not only the surface tension, but also the kinetic energy

density shows departure from the constant value one would
expect. For water molecules, the relation between kinetic
energy E, number of atoms N, and temperature is kBT = ⟨E⟩/N,
which can be written naively in a local form as kB τ(z) =
TrK(z)/ρ(z), with τ(z) representing the kinetic energy density
profile. The profile so defined departs from the constant value
T in the proximity of the interface (see Figure 2). This, again, is
not a violation of the equipartition theorem, which can be used
to derive the correct expression for the average kinetic energy
contribution of the ith atom in the water molecule

Figure 1. Ideal gas rotational contribution γid to the surface tension
profile as computed from the kinetic energy tensor (solid line) and
from eq 1 (full circles); contribution of successive molecular layers
calculated from the kinetic energy tensor (shaded areas) and from eq 1
(open circles).
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where M is the mass of the molecule and the term 3/M is the
molecular center of mass velocity (translational) contribution
to the atom’s kinetic energy; the remaining terms are the
rotational contributions (interestingly, for the symmetric top,
the rotational contribution of each atom is simply kBT/2). The
atomic kinetic energy density profile can thus be written using
only atomic positions as kBτ(z) = ∑i⟨eiδ(z−zi)⟩/ρ(z) and is
shown in Figure 2 to reproduce very well the kinetic definition.
Obviously, this quantity does not correspond to the usual
thermodynamic temperature, which is expected to be constant
across the interface. The temperature so defined loses its
meaning once correlations between momenta and atomic
positions occur. However, by using a molecular-based definition
of the kinetic energy, in which the translational and rotational
contributions are concentrated at the center of mass of the
molecule, one obtains the expected constant profile, as shown
also in Figure 2.
As it is clear that the kinetic part of the pressure tensor is

needed to compute the correct value of the surface tension if
rigid molecules are present in the system, one might wonder if
this can create problems for methods like Monte Carlo, which
do not provide explicit access to momenta. In fact, if one wants
to compute the surface tension through explicit calculation of
the pressure tensor elements, there is no other way but to
include the kinetic contribution through formulas like eq 1.
However, this is not the only possible route to the surface
tension: the test-area method21 (of which also local variants
exist22), for example, follows a thermodynamic route to
compute the surface tension as the limit toward vanishing
cross-sectional surface area perturbations ΔA (at constant
volume) of the associated changes in Helmholtz free energy F,
so that γ = limΔA→0ΔF/ΔA = −kBT ln⟨exp(−ΔU/kBT)⟩, where
ΔU is the change in potential energy between the perturbed
and not perturbed state, and the ensemble average is performed
over configurations sampled from the unperturbed state.
Because this is (in the limit of small perturbations) the
thermodynamic definition of the surface tension, one might
expect it to yield the total surface tension, including the kinetic
contributions. To test this, we computed the surface tension for
water at T = 300 K using the test area method with area
changes of 0.1, 0.05, and 0.01% and extrapolated the results to

vanishing area changes using a linear fit, resulting in a surface
tension estimate of 59.5 ± 0.1 mN/m. This has to be compared
with the mechanical route results of 59.9 ± 0.2 mN/m (full
pressure tensor) and 51.2 ± 0.2 mN/m (virial contribution
only). The test area method is therefore an appropriate way to
obtain the surface tension with Monte Carlo methods when
rigid molecules are present.
Finally, we report a surprising result obtained from the

analysis of the temperature dependence of the ideal gas
contribution on the surface tension. Because the orientational
preference of water molecules at the surface has to vanish when
approaching the critical point, one can expect γid to decrease
when the temperature increases. The values of γp and γΞ show,
in fact, a similar decreasing pattern, reaching convergence as the
temperature approaches the critical value, as shown in Figure 3.

What is quite remarkable, however, is that the relative
contribution γid/γp is, to a good approximation, independent
of the temperature and oscillates within a few fractions of a
percent around 15%. We tested different rigid water models
(SPC,23 TIP3P,24TIP4P,24 TIP4P-2005,25 TIP5P,26 and
TIP5P/E27), obtaining in all cases a temperature-independent
ratio of γid/γp, although the value itself is model-dependent,
ranging from about 9 to 15%, as shown in Table 1. There is,
therefore, a direct proportionality between the orientational
order of molecules, of which γid is representative, and the
surface tension of the system, γp ∝ γid.

■ METHODS
Simulations have been performed using the GROMACS 5.1,28

LAMMPS,29 and ESPResSo30 molecular simulation packages
using either single or double precision. Water molecules have
been kept rigid by either solving the constrained equation of
motion using the SHAKE31 or SETTLE32 algorithms or, in the
case of ESPResSo, by solving the rigid-body dynamics using
quaternions. The difference between γΞ and γp has been shown
to persist independently from short-range forces at the cutoff
distance (force truncation vs potential shift), mesh size and
accuracy in the smooth particle mesh Ewald33 (sPME) or
particle−particle particle−mesh Ewald34 method, number of
reciprocal vectors and β parameter in plain Ewald method,
integration time step from 0.1 to 1 fs, simulation box size, type
of thermostat (Berendsen35 vs Nose−́Hoover36,37) and
ensemble (microcanonical vs canonical). The actual value of
the surface tension depends on the short-range interactions
cutoff value as well as on the parameters used to compute the

Figure 2. Upper panel: kinetic energy density profile τ(z) calculated
using the atomic expression kBτ(z) = TrK(z)/ρ(z) (blue squares),
using eq 2 (red circles), and using the molecular expression (yellow
triangles), as described in the text. Lower panel: atomic density profile
of the whole system and of the first three layers, normalized to the
density in the liquid region.

Figure 3. Upper panel: surface tension γp and virial contribution γΞ as
a function of temperature. Lower panel: ratio γid/γp = 1 − γΞ/γp. Error
bars are always smaller than the symbols in the upper panel and are for
all temperatures of the order of 0.1−0.2 mN/m.
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electrostatic interaction. The data reported in Figures 1 and 2
are obtained by simulating 1488 water molecules in a 3.6 × 3.6
× 9.6 nm3 simulation box with the velocity-Verlet algorithm,
smoothly switching the short-range forces to zero in the
interval between 1.55 and 1.6 nm, using sPME with an accuracy
of 10−8 for the real part of the screened electrostatic potential at
1.55 nm and a reciprocal space grid of 128 × 128 × 256, the
Nose−́Hoover thermostat with the reference temperature of T
= 300 K and relaxation constant 0.5 ps, and an integration time
step of 0.1 fs. The data reported in Figure 3 and Table 1 were
obtained by simulating 1000 water molecules in a 5 × 5 × 15
nm3 simulation box with the leapfrog algorithm; the sPME
algorithm with an accuracy of 10−5 at the real-space cutoff of
1.3 nm, which is also used as a cutoff for the van-der-Waals
interactions, without using switching functions for the force;
and an integration step of 1 fs. The calculation of the surface
tension profiles and the layer-by-layer analysis have been
performed using the ITIM algorithm18,38 for the identification
of surface molecules, with a probe sphere radius of 0.2 nm. The
liquid and gas phases have been distinguished before
determining the layer structure using a cutoff (0.35 nm)
based cluster search that associates the liquid phase to the
largest cluster in the system.39 The low inaccuracies for the
values of the surface tension as well as smooth profiles were
obtained by analyzing 30 000 samples over 3 ns for the data
reported in Figures 1 and 2 and 50 000 samples over 50 ns for
each system and temperature for the data reported in Figure 3
and Table 1.
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new method for determining the interfacial molecules and character-
izing the surface roughness in computer simulations. Application to
the liquid-vapor interface of water. J. Comput. Chem. 2008, 29, 945−
956.
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